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Abstract: The transition matrix X(t) between the power sum product and Hall-
Littlewood function gives us Green’s polynomials. These polynomials are useful
in the construction of the irreducible characters of GL(n, q), see [Green 1955]
and [Morris 1963]. In this paper we consider the special case t = ω, where ω is a
primitive pth root of unity. Our intension is to give proof of some conjectures
[Morris and Sultana 1991].
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INTRODUCTION
We shall first briefly review some of the basic definitions and results. We
follow closely the notations used in Macdonald [1995].
Let λ = ( λ 1, … λ m) be a partition of n; that is λ 1 + …+ λ m = n, λ 1

≥ λ 2 ≥ … λ m > 0. Length of the partition is denoted by λ( λ ) = m. We
shall write |λ| for Σλi, called weight of the partition.
We some time write a partition λ in the form

λ = (1 1m 2 2m … r rm ).
where mi = mi( λ ) is the number of parts of λ which are equal to i.

Let @(n) denotes the set of all partition of n. A partition λ of n is row λ-
singular if λi+1 = λ i+2 =… = λ I+ λ > 0 for some i. Otherwise λ is row λ-
regular.

A partition λ of n is row λ-singular ifλl λI for some i. Otherwise λ is
column λ-singular.
For later use we let @λ (n) and @λ(n) denote the set of row λ-regular and

column λ-regular partition of n respectively. Then it is well known that
|@λ (n)| =| ? λ(n)| [James and Kerber 1981].

Let x1, x2, … be an infinite set of indeterminates and t an indeterminate
independent of the x1, x2….xr Let Pλ (x; t) and Qλ(xn; t) be the Hall-
Littlewood P and Q-functions defined by [Macdonald 1995]. We may have

Qλ(x; t) = bλ(t) Pλ(x; t) (1.1)
where bλ(t) = ∏ )(λφ

im (t) (1.2)

and φr(t) = (1 - t) (1 - t2) … (1 - tr) (1.3)

Then we define another function
Qr(x; t) = qr (x; t)
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Moreover by using differential operator on Hall-Littlewood P and Q-
functions it has shown in [Sultana 1999] that

n
np∂

∂
qN = (1 – tn) qN-n (1.4)

where p i is power sum symmetric function pi = i
r

r

x∑
∞

=1

(i = 1,2,…)

The transition matrix X (t) connecting the Pλ (x; t) or Qλ (xn; t) with power-

sum bases np
nppxp ...)({ 1

1
ρ

ρ = }| npn...1( 1ρρ = ) is called Green’s

polynomial, that is
pρ(x) = Σ λ

ρX (t) P λ (x; t) (1.5)

and Q λ (x; t) = Σ zρ(t)
-1 λ

ρX (t) p λ (n) (1.6)

where zρ (t) =
!

)1(

1 ij
i

i

i

t

ρρ

ρ−∏
≥

and thus λ
ρX (t) ∈ Z[t] [Sultana 1999].

The following is a generalization of the Murnaghan-Nakayama recursive
formula in [Murnaghan 1938] for calculating irreducible characters of
symmetric group Sn. We give here a proof of this result.

Theorem

Let λ
ρX (t) be the Green’s polynomial and ρ′ = ( Nn Nn ρρρρ

......21 12
1

− ),

then λ
ρX (t) = ∑

∈ )(λµ M

µ
ρ′X (t), where M(λ) is the set of m partitions µ of N-n

obtained by subtracting n from each part of λ in turn.

Proof
By theorem given by Macdonald [1995] on page 107 we have

Qλ(x; t) =∏
≥1i

1 + (t – 1) Rij + (t2 – t) 2
ijR + …) qλ(x; t)

Where R ij is the operator, which replaces λi by λi+1 and λj by λj-1. Thus

Qλ(x; t) = ∑ ψR (t) λRq ,

where ψR(t) ∈ Z[t]

we see that qRλ = 0 if any part of Rλ is negative. If we replace λ by λ - n∈i,
where ∈i = (0, …, 0, 1, 0, …,0) with 1 in the ith place we obtain

in

m

i

Q ∈−
=
∑ λ

1

= ∑
R

ψR (t) )(
1

∈−
=
∑ nR

m

i

q λ ,
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or

(1 – tn)
in

m

i

Q ∈−
=
∑ λ

1

= ∑
R

ψR (t) ∑
=

m

i 1

(1 – tn) )( inRq ∈−λ

Now by using (1.4) we have

(1 – tn)
in

m

i

Q ∈−
=
∑ λ

1

= Σ ψR (t) ∑
=

m

i 1
1)( λRq … n

np∂
∂

iRq )( λ …
rnRq )( λ

= n
np∂

∂
Qµ,

Therefore, n
np∂

∂
Qλ(x; t) = (1 – tn) ∑

∈ )(λµ M

Qµ(x; t) (1.7)

Now substituting (1.6) in (1.7) and then comparing the coefficients of
Nnp

Nn ppp
ρρ

......
11

1

−

. We get the required result.

Also for t = 0 since P λ (x; 0) = Sλ, where Sλ is Schur function defined by

[Schur 1911], we have
pρ = Σ λ

ρX Sλ since λ
ρX (0) = λ

ρχ
where λ

ρχ is the value of irreducible character λχ of Sn at elements of

cycle-type ρ.

For the case t = - 1. If λ ∈ @2(n) and ρ ∈ @2(n), then

λ
ρξλρλρ

λ
2/))()()((2)1( ∈+−=− λλX

where λ
ρξ are the irreducible spin characters of Sn and ∈(λ) = 1 or 0

according as n - λ(λ) is odd or even.

From Macdonald [1995] we have the following results:

)()( 1
1)(

)( −
−= tttX n

n λ
λλ φλ (1.8)

where n(λ) = Σ(i – 1)λi and φr(t) = (1 – t) … (1 – tr)

and
n

X 1
ρ (t) = ∏

=

n

i 1

(t-i – 1) / )( 1

1

−∏
≥

jt
j

ρ
(1.9)

RESULTS ON X(ω) WHERE ω IS PRIMITIVE pth ROOT OF UNITY
Now we shall discuss the transition matrix X(ω) which is special case of
X(t) where t = ω, ω is a primitive pth root of unity. Then X(ω) are of great
interest in the modular representation theory. Morris and Sultana [Morris
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and Sultana 1991] discussed the transition matrix X(ω) for n = 3,4,5 and
for p = 2, 3.
We now divide the matrix X(ω) into four submatrices say X1(ω), X2(ω),
X 3(ω) and X4(ω) arranged as follow.

@ρ (n) @(n)⁄

@ρ (n)

@ ρ (n) X1(ω) X2(ω)

@(n)⁄ @ ρ (n) X3(ω) X4(ω)

It was noted that X4(ω) are either zero or divisible by p.
There are two conjectives given by Sultana [1990], in this section we shall
prove those conjectives for some partitions. By using (1.8) and (1.9) we
shall prove the following results.

Theorem

Let λ = kp, where p is any prime, then 2

)1)(1(
)( )(

−−

=
pk

k
n pX

p

ωω .

Proof
Since by (1.7) we have

)()( 1
1)(

)( −
−= tttX n

n λ
λλ φλ .

Thus for t = ω, ω is primitive pth root of unity and λ = kp, we have

n(λ) = ∑
=

p

i 1

(i – 1)k

= ∑
−

=

1

1

p

i

ik.

and ∏
−

=

−
− =

1

1

1
1)( )(

p

i

ωφ λλ (1 - ω-1)i

= ω
∑

−

=

−
1

1

p

i

i

∏
−

=

1

1

p

i

(ωi – 1)

= p ω
∑

−

=

−
1

1

p

i

i

Hence
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=)()( ωχ
pk

n p ω
∑

−

=

−
1

1

p

i

i

ω
∑

−

=

1

1

p

i

ik

= p ω (k - 1)
∑

−

=

−
1

1

p

i

i

= p ω
2

)1)(1( −− pk

which is required result.

Remark
Above theorem shows that

p/ )(ω
pk

nX .

Theorem
Let n = kp + j, where p is primitive pth root of unity and j < p. Then

)(
~

!)( )1()1( ωω µρ
jn

XpkX k= whenever ρ has k parts equal to p

= 0 otherwise,

where )(
~ )1( ωµ

j

X is the polynomial for the transition matrix in which rows and

columns are indexed by the partitions of j.

Proof
Let ρ = (kρ, µ1,…,ur), where (µ1,…,ur) be any partition of k. Now in
equation (1.8) for t = ω, where ω is primitive pth root of unity. We get

)(
~ )1( ωµ

j

X = ∏
+

=

jkp

i 1

( 1−iω )/∏
≥1j

( )1−jρω

= pk k!

∏

∏

=

=

−

−

r

j

j

i

j

j

1

1

)1(

)1(

µω

ω

= pk k! )(
~ )1( ωµ

j

X .
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