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NUMBER OF 2π-PERIODIC SOLUTIONS OF THE NON-
AUTONOMOUS EQUATION IN THE WHOLE PLANE
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Abstract: 2π-periodic solutions of certain one dimensional non-autonomous
cubic differential equations are investigated in the whole plane when the
coefficient of cubic term in the equation does not change sign, using the
transformations (1.3). Also we have proved that the transformation can be
applied to non-homogeneous system (4.1) for possible investigation of 2π-
periodic solutions.
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INTRODUCTION
We consider the differential systems of the form
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where pn and qn are homogeneous polynomials in x, y of degree n and λ
is a real constant. In polar form equation (1.1) can be written as

r&= λr + rnf(θ)
θ&= -1 + rn-1g(θ) (1.2)

where f(θ)and g(θ) are homogeneous polynomials of degree n + 1 in cosθ
and sin θ. Now we define

ρ = rn-1 (1 – rn-1g(θ))-1 (1.3)
Then after some manipulation, we obtain

θ
ρ

d

d
= α(θ)ρ3 - β(θ)ρ2 - λ(n-1)ρ (1.4)

where
α(θ) = -(n-1)g(θ) {f(θ) + λ g(θ)}

β(θ) = -(n-1){f(θ) +2λg(θ)} + g′(θ)
are homogenous polynomials in cosθ and sinθ of degree 2n+2 and n+1
respectively. The transformation (1.3) is defined in an open set D
containing the origin, where

D = {r,θ); rn-1 g(θ) < 1}, (1.5)

In this paper we are mainly concerned with the number of 2π-periodic
solution of (1.4) or the number of limit cycles of (1.1) in the whole plane
when the associated function α(θ) in (1.4) does not change sign.
Previously results have been obtained about the number of 2π-periodic
solutions of (1.4) inside the set D [Cherkas 1976, Lloyd 1982]. We were
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motivated by the paper of Carbonell and Llibre [1997]. The relationship
between (1.1) and (1.3) will be explained in section 2. In section 3 results
will be obtained for homogeneous systems (1.1). In section 4 we will
show how the transformation (1.3) can be applied to non-homogeneous
systems to investigate the number of 2π-periodic solutions.

THE TRANSFORMATION
The transformation (1.3) is used to investigate the number of limit cycles
of (1.1). For Quadratic systems see Coppel [1986] and [Lins Neto 1980] D
extends at least as far as the outermost limit cycles surrounding the
origin. Note that the transformation (1.3) maps r = 0 to ρ = 0, r > 0 to ρ > 0
and the neighbourhood of r = 0 to neighbourhood of ρ = 0. If ρ > 0 and 1 +
g(θ) > 0 for all θ, we invert (1.3), then r is the positive (n-1) the root of

)(1 θρ
ρ
g+

(2.1)

It is easy to check that for system (1.1) the critical point at the origin
corresponds to the constant solution ρ = 0 of (1.4) and limit cycles of (1.1)
correspond to 2π-periodic solution of (1.4) with ρ small and positive.

LIMIT CYCLES
To investigate the number of limit cycles of (1.1) or 2π-periodic solution of
(1.4) when α(θ) in (1.4) does not change sign. We define curve.

K = {r, θ): θ&= 0} (3.1)

Then on K, rn-1 =
)(

1

θg
. The possible forms of K when n is odd are as

follows

g(θi) = 0 i = 1,2 g(θi) = 0 i = 1,2
g(θ) < 0 for all θ ∈ (θ1 θ2) g(θ) > 0 for all θ ∈ (θ1 θ2)

n is odd and
g(θ) > 0 for all θ.
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We are interested in the case (iii) when n is odd and g(θ) > 0 for all θ. In
this case K is simple closed curve which divides the plane into two parts;
θ&< 0 and θ&> 0. To see the number of limit cycles inside the curve K, we
use the transformation (1.3). We suppose that α(θ) in (1.4) never zero. It

is easily seen that the constant solution ρ = 0 and ρ = -
)(

1

θg
if g(θ) > 0

for all θ are 2π-periodic solutions of (1.4).
To investigate the number of limit cycles outside the curve K, we use the
transformation

σ =
1)(

1
1 −− θgr n

(3.2)

If σ > 0, we can invert (3.2) and we have

1−nr =
)(

1

θσ
σ
g

+
(3.3)

Then in (σ,θ) co-ordinates, system (1.1) becomes

θ
σ

d

d
= A(θ)σ3 + B(θ)σ2 +C(θ)σ (3.4)

where
A(θ) = -(n-1){f(θ)+ λ g(θ)}/g(θ) = α(θ)/ (g(θ))2

B (θ) = -(n-1){2f(θ) +2λg(θ)}/g(θ) - g′(θ)/ g(θ)

C(θ) = -(n-1) f(θ)/g(θ) - g′(θ)/ g(θ)

The transformation (3.2) maps r = 0 to σ = -1, r = ∞ to σ = 0 and the curve
K into σ = ∞. It can be seen that σ = 0 and σ = -1 are periodic solutions of
(3.4). Let

S(σ,θ) = A(θ)σ3 + B(θ)σ2 + C(θ)σ

and we denote the return map associated with this system by h*(x). Then
the derivative of the return map [Lloyd, 1982] at σ = 0 is

*′h (x) = exp [(n-1) D1] (3.5)
where

D1 = - ∫
π2

o )(

)(

θ
θ

g

f

Since A(θ) =
2))((

)(

θ
θα

g
and as α(θ) is of one sign g(θ) > 0 for all θ;

therefore A(θ) is of one sign. Thus in different cases we have the
following results.
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Theorem
Let n be odd and α(θ) ≥ 0. Then there is one limit cycle if λα(θ) ≥ 0 and no
limit cycle if λα(θ) ≤ 0.

Proof

Since α(θ) = -(n-1) g(θ) {f(θ) + λ g(θ)} ≥ 0. Then A(θ) =
2)}({

)(

θ
θα

g
≥ 0.

Because g(θ) > 0 for all θ. Let H(θ) = f(θ) + λ g(θ). Then α(θ) ≥ 0 implies
H(θ) < 0; as g(θ) > 0 for all θ. On the curve K, θ&= 0 and r&= r H(θ)/g(θ);
therefore the vector field on K points radially inward. Now
(i) Let λ > 0. Then from (1.1) it is clear that the origin is unstable, thus

by Poincare Bendixon theorem there is at least one closed orbit
between ρ = 0 and the curve K. To look at infinity, we use the
derivative of return map given in (3.5). Since H(θ) < 0 and λ > 0, g(θ)
> 0. Therefore f(θ) ≤ 0 and hence (3.5) gives D1 > 0; that is σ = 0 or
infinity is unstable (repelling). So we have at most two limit cycles
between σ = 0 and K or non. As the maximum number is three, and
two namely σ = 0 and σ = -1 are known, therefore if λ > 0 and α(θ) ≥ 0
there exists exactly one limit cycle inside K.

(ii) Let λ < 0. Then H(θ) = f(θ) + λ g(θ) ≤ 0 implies that either f(θ) ≤ 0 or
f(θ) ≥ 0. If g(θ) ≤ 0 then D1 > 0 and hence by (3.5) σ = 0 is unstable.
So there is no limit cycle between the curve K and σ = 0. Since λ < 0
then the origin (ρ = 0) is stable and the vector field is inward on K,
therefore there are two limit cycles or no limit cycle between ρ = 0 and

the curve K. Since ρ = 0 and ρ = -
)(

1

θg
are known and there are at

most three limit cycles in total, thus there is no limit cycle between ρ =
0 and K if λ < 0 and α(θ) ≥ 0. Similarly if f(θ) ≥ 0 then D1 ≤ 0 and σ = 0
is stable; therefore by Poincare - Bendixon theorem there exists one
limit cycle between σ = 0 and K and non between ρ = 0 and K.

Now let α(θ) ≤ 0; then the vector field on the curve K is radially outward.
Following the same procedure as above, we have the following result.

Theorem
Let n be odd and α(θ) ≤ 0. Then there is no limit cycle if λα(θ) ≤ 0 and
there is one limit cycle if λα(θ) ≥ 0.

EXTENSION TO NON-HOMOGENEOUS SYSTEM
In the previous papers, work has been done for the systems of the form
(1.1). In this section we show how the transformation described in section
2 can be applied to the systems of the form

x&= λ x + y + Pn(x, y) + x Rm-1(x, y)
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y&= -x + λ y + qn(x, y) + y Rm-1(x, y) (4.1)
where pn and qn are homogeneous polynomials in x and y of degree n
and Rm-1 is a homogeneous polynomial of degree m-1 in x and y.
In polar co-ordinates the system (4.1) can be written as

r&= λγ + rnf(θ) + rmR(θ)
θ&= -1 + rn-1g(θ) (4.2)

where
f (θ) = cosθ pn(cosθ, sinθ) + sinθ qn(cosθ, sinθ)
g(θ) = cosθ qn(cosθ, sinθ) - sinθ pn(cosθ, sinθ)
R(θ) = Rm-1(cosθ, sinθ)

are homogeneous polynomials of degree n + 1, n + 1 and m – 1
respectively. Since θ& in (4.2) is independent of R(θ), we can use the
transformation (1.3). After some manipulation, in (ρ,θ) co-ordinates we
have

-
θ
ρ

d

d
= (n-1)λρ + ρ2(n-1)(f(θ) + 2λg(θ)) - g′ (θ)

+ ρ3{(n-1)(f(θ)g(θ) + λ(g(θ))2} +
31

1

)}(1{

)()1(

θ
θ

gr

Rrn
n

nm

−

−+

−
−

(4.3)

From (4.3) it is clear that we can only transform the system (4.1) into the
form (1.4) if m = 2n –1, then the system (4.1) in (ρ,θ) co-ordinates
becomes

θ
ρ

d

d
= α(θ)ρ3 + β(θ)ρ2 – (n – 1)λρ (4.4)

where
α(θ) = -(n – 1){g(θ)(f(θ) + λg(θ)) + R(θ)}
β(θ) = -(n - 1){f(θ) + 2λg(θ)} + g′ (θ)

are homogeneous polynomials in sinθ and cosθ of degree 2n+2 and n+1
respectively. Note that R(θ) is of degree 2n-2, we can make it of degree
2n+2 multiplying by (cos2θ + sin2θ)2. Thus the only systems which are
amenable to the transformation (1.3) are of the form (4.1) with m = 2n – 1.
Our aim in this section is to consider equation (4.4) when α(θ) does not
change sign and to explore some of the consequences for the
corresponding system (4.1). We therefore suppose that α(θ) and β(θ) are
as given in (4.4). With regard to the system (4.1), the critical point at the
origin of (4.1) corresponds to the constant solution ρ = 0 of (4.4) and limit
cycles of (4.1) corresponds to 2π-periodic solution of (4.4) with ρ > 0.
Let I be an interval on the positive x-axis, ρ > 0. Let ρ(θ,x) denote the
solution of (4.5) satisfying ρ(0,x) = x. If ρ (2π,x) exists we define the
return map h(x) =ρ (2π,x). Then 2π-periodic solution of (4.5) corresponds
to the zeros of the displacement function H(x) = h(x) – x. To obtain the
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results about limit cycles of system (4.1) we shall use the following
proposition [Gasull et al. 1987].

PROPOSITION
Assume that α does not change sign and α(θ) ≠ 0. Let h(x) be the
return map associated with the system (4.4). Then the equation
h(x) = x has at most three roots, counting multiplicity.

PROPOSITION [Lloyd 1997]
If α does not change sign and α(θ) ≠ 0, then system (4.4) has at most
three periodic solutions.
To investigate the number of positive 2π-periodic solution, we consider
two cases:

(i) When n is odd, (ii) When n is even.

When n is even, g(θ) and β(θ) are of odd degree; hence ∫
π2

o

β(θ) = 0.

Moreover if ρ(θ) is 2π-periodic solution of (4.5). So is -ρ(θ + π), and the
two are of opposite sign. Thus we have the following results.

Theorem
Suppose that n is odd and α(θ) does not change sign. If λ ≠ 0, then there
at most two positive 2π-periodic solution; there can be no more than one
if α ≥ 0 and λ > 0 or λ = 0.

Proof
Since α(θ) does not change sign, by proposition (4.2) equation (4.4) can
have at most three 2π-periodic solution. But ρ = 0 is one of them.
Therefore there are at most two positive 2π -periodic solutions. If λ = 0
and α(θ) ≥ 0. Then using derivative of the return map [Lloyd, N.G., 1982],
the origin is periodic solution of multiplicity at least two and h ′′′ (x) > 0. So
there can be at most one positive 2π-periodic solution. If α (θ) ≥0 and λ>0
then H(x) < 0 and H ′′′ (x) > 0. Thus h(x) – x can not have more than one
zero if α ≥ 0 and λ > 0.

Theorem
Suppose that n is even and that α(θ) does not change sign. If λ ≠ 0, there
are no positive 2π-periodic solution if λα ≤ 0 and at most one if λα ≥ 0. If
λ = 0, there are no non-trivial periodic solution.

Proof
Since α(θ) does not change sign there are at most three 2π-periodic
solution. But ρ = 0 is one of them, since n is even, if ρ(θ) is a 2π-periodic
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solution of (4.4) then - ρ(θ + π) is also a 2π-periodic solution so there can
be only one periodic solution. If λ=0 then the origin is at least of
multiplicity two and in this case periodic solution occur in pairs and they
are of different sign.
So there can be no non-trivial periodic solution of either sign. If λ ≠ 0 and
λα(θ) ≤ 0. Suppose α ≥ 0 then λ < 0. Thus h(x) – x > 0 for sufficiently
small x and H ′′′ (x) > 0. Since in this case 2π-periodic solutions occur in
pairs therefore ρ = 0 is the only periodic solution, so there is no positive
2π-periodic solutions if λα ≥ 0, suppose α ≥ 0 then λ > 0, therefore using
the derivative of the return map [Lloyd, 1982]. We have H(x) < 0 and
H ′′′ (x) > 0 so h(x) – x = H(x) can have at most one positive zero, so
there is at most one positive 2π-periodic solutions if λα ≥ 0. The proof
is similar if we suppose α ≤ 0.
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