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Abstract: An algorithm based on modified improved Ehrlich method is developed 
which using real arithmetic could find all the zeros of Legendre-, Shifted Legendre- and 
Doubly Shifted Legendre polynomials, simultaneously, using a three term recurrence 
relation. The only information required is degree of the polynomial. The algorithm also 
finds simultaneously all the zeros of a linear combination of these polynomials, requiring 
information about the number of terms and the coefficients in the linear combination. The 
same algorithm works for finding simultaneously all the zeros of real polynomials 
requiring information about its degree and coefficients. 
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1. INTRODUCTION 
 
   An algorithm1,2 was designed for finding 
simultaneously all the zeros of a real as well as 
complex polynomials, expressed in monomial 
basis. The two algorithms required information 
only about degree and coefficients of the 
polynomial. Six methods belonging to the Durand-
Kerner and Ehrlich families3,4,5,6,7were compared 
numerically in the above mentioned papers. It was 
found that the modified improved Ehrlich method 
was the best amongst the six methods considered. 
Consider a real polynomial of degree n 
            (1.1) azazaza n1-n
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, where are real. Occasionally, this 
explicit representation of the polynomial may not 
be immediately available. For example, it may be 
required to find the zeros of a determinant with 
polynomial entries. In this work, therefore, 
consideration is given to the ways in which an 
algorithm for finding the zeros of a real 
polynomial expressed in the monomial basis could 
be modified to find the zeros of a polynomial 
expressed in the ‘ Legendre basis’ and their linear 
combination. 

0,1,...n,i,ai
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 The linear combination of the Legendre 
basis polynomial is of the form 

(z)d(z)p r
n

0r rn φ∑= =         (1.2) 

where (z)rφ  is the rth degree Legendre or 
Shifted Legendre or Doubly Shifted Legendre 
polynomial and  is a real number. d r

 We have tested the algorithm for finding 
simultaneously all the zeros of a real polynomial 
over 250 polynomials of varying degrees1 . 
 The basis polynomial is discussed in 
Section 2 whereas, the modified improved Ehrlich 
method is given in algorithm form in Section 3. In 
Section 4, some ways of generating initial 
estimates considered whilst termination criterion 
for the implemented algorithm and polynomial 
evaluation is described in Sections 5 and  6. 
Sections 7 and 8 contains numerical results for 
Legendre-, Shifted Legendre- and Doubly Shifted 
Legendre polynomials and their linear 
combinations. Finally, Section 9 contains a 
description of the form of the implemented 
algorithm, which is given as a FORTRAN 
procedure in the appendix. 
 
2.  THE BASIS POLYNOMIAL 
 
 The basis polynomial8 considered will 
form polynomials { , where  }(z)

rφ
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rφ  is of exact degree r  in z , The 

family will be generated by 
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Then { form a linearly independent 
set and hence provides a basis for the 
representation of any polynomial of degree n. 

,(z)} n0,1,...,r 
r

, =φ

A number of basis can be generated in this way, 
but we consider here the following three bases: 
 
i) The Legender Polynomials 
ii)  
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iii) The Shifted Legendre Polynomials 
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iv) The Doubly Shifted Polynomial 
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These basis are the examples of orthogonal basis 
and of course, any orthogonal basis is generated 
by a three-term recurrence of the form (2.1). The 
intervals of orthogonality of Legendre-, Shifted 

Legendre- and Double Shifted Legendre 
polynomials are [-1,1], [0,1] and [0,1/2] 
respectively. 

 
 
3.     ALGORITHM FOR MODIFIED   
        IMPROVED EHRLICH METHOD 
 

We give the algorithm for updating a set of 
zero estimates to obtain improved 
estimates . Within the algorithm, the 
polynomial is denoted by  and its derivative 
by 

z,...,z,z n21

z~,..., nz~,z~ 21

p(z)
(z)p′ .  

We assume some initial ordering of the 
indices, say (1,2…n) and each stage of algorithm 
is extended for i running through these values. 
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(v) The ordering  of the  indices is reversed  before    
      the next iteration and this alternation continues     
      until convergence. 
 
4. GENERATION OF INITIAL ESTIMATES 
 
Consider    the    polynomial (1.1)    having    zeros 

z,...,z,z n21 .      Henrici 9,  states that  these roots 
all lie inside a circle of radius Beta 

a/amax2 0k

1/k

nk1 ≤≤
      (4.1) 

where  Beta  is  a  bound  on  the  largest  zero of a 
polynomial (1.1). It is a well known result 13that if 
p(z)  has a zero inside the circle ρ≤z  z)p(ρ has 
a zero inside the unit circle. This  result is true for 
both    real    and    complex    polynomials.    The 
polynomial (1.1)  was  therefore  scaled  using the 
bound (4.1)  to  bring  all  of its zeros into the unit 
circle.  The   arbitrary   initial   estimates   for  the 
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zeros of the polynomial (1.1) were taken to be the 
points   uniformly   spaced r ound  the  unit  circle 
having  the  centre  at the origin, that is, the points 

i]1)/n  -(k2exp[ π  in the complex plane. 0.05 was 
added    to   the    exponent    argument   to  avoid 
symmetric    distributions    which     may    cause 
numerical difficulties. 
 
5.  CONVERGENCE CRITERION 
 
This  is  provided  by  computing  a  bound  on the 
accumulated round off error in the computed value 
of  the  polynomial.  When  this  indicates  that the 
later value can be fully accounted for by rounding 
error, the  iterative  process is terminated, as  there 
may   be  no  useful   information   available  from 
which to determine an improved estimate. Bounds 
of  this  type  have  been given by Adams 10,Peters 
and  Wilkinson 11  and  Grant  and  Hitchins 12.  In 
practice,  they  have  been  found to be extremely 
reliable  and  accurate, p articularly, if one or two 
extra  iterations  are  performed  to  allow  for the 
conservative  nature  of  the  bound.  Their  major 
disadvantage is the cost of evaluating them. 

 
6.  POLNOMIAL EVALUATION 
 
As ultimately, we are getting polynomials with 
real coefficients only, they and their derivatives 
can  be  evaluated  at  βα  i   +  by executing the 
algorithm 
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Following Adams10, abound on the error can be 
found using 
               ,b8.0e 00 =  
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which is a machine constant, the smallest number 
which when added to one produces a change. In 
the numerical result ρ was taken to be 2  .-53

 
7. NUMERICAL RESULTS 
 

Some results of Legendre Polynomials of 
varying degrees are discussed here. 

 
7.1  Legendre Polynomials 
 

The zeros of Legendre polynomial are real 
and always lie in the interval [-1,1].  
Estimated zeros of Legendre Polynomials 
of degree 15, using implemented algorithm 
are given below: 
 

POLYNOMIAL OF DEGREE 15 
Real Part   imaginary Part 
 0.9879925180E+00               0.7177876729E-38 
 0.8482065834E+00            -0.5262173930E-37 
 0.5709721726E+00             0.0000000000E+00 
 0.2011940940E+00             0.0000000000E+00 
-0.3941513471E+00             0.0000000000E+00 
-0.7244177314E+00               0.0000000000E+00 
-0.9372733924E+00  0.0000000000E+00 
-0.9879925180E+00  0.2888047299E-36 
-0.8482065834E+00  0.0000000000E+00 
-0.5709721726E+00  0.0000000000E+00 
-0.2011940940E+00  0.0000000000E+00 
 0.3941513471e+00  0.0000000000E+00 
 0.7244177314E+00            -0.1128474577E-35 
 0.9372733924E+00  0.0000000000E+00 
 0.0000000000E+00               0.0000000000E+00 
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We observe the eleven zeros are correct to the last 
decimal place and the largest error in the 
remaining zeros is     - . 100.1x -35

 
7.2   Shifted Legendre Polynomials 
 

The zeros of Shifted Legendre polynomial 
are real and always lie in the interval  [0,1].  
Estimated zeros of Shifted Legendre Polynomials 
of degree 15, using implemented algorithm are 
given below: 
 
POLYNOMIAL OF DEGREE 15 
Real Part   imaginary Part 
0.9939962629E+00                -0.161587134E-26 
0.9241033056E+00                -0.5835834238E-31 
0.7854860889E+00             -0.5547422732E-27 
0.6055970472E+00                -0.3118639581E-27 
0.3994029530E+00  -0.1724419894E-28 
0.2145139137E+00   0.2310514080E-31 
0.7589670829E-01   0.1880790961E-36 
0.6003740990E-02   0.0000000000E+00 
0.3136330380E-01   0.0000000000E+00 
0.1377911343E+00   0.0000000000E+00 
0.3029243265E+00  -0.1764593345E-33 
0.50000000000E+00   0.0000000000E+00 
0.6970756723E+00   0.1371926612E-24 
0.8622088582E+00   0.1461664596E-25 
0.9686366869E+00  -0.5844907863E-32 
 
7.3    Doubly Shifted Legendre Polynomials 
 

The zeros of Doubly Shifted Legendre 
polynomial are real and always lie in the interval  
[0,1/2].  Estimated zeros of Shifted Legendre 
Polynomials of degree 15, using implemented 
algorithm are given below: 

 
POLYNOMIAL OF DEGREE 15 
Real Part      imaginary Part 
0.4969981313E+00             -0.1222581212E-21 
0.4620516524E+00                  0.2626612176E+18 
0.3927430450E+00  -0.4086428332E-19 
0.3002985237E+00   0.5125362133E-21 
0.1997014765E+00  -0.1802783196E-21 
0.1072569568E+00   0.8028836967E-24 
0.3794835415E-01  -0.3559734835E-27 

0.3001870495E-02  -0.1194076566E-31 
0.1568165190E-01  -0.5926454613E-17 
0.6889556716E-01  -0.1625053465E-27 
0.1514621632E+00   0.3283302196E-27 
0.2500000000E+00   0.0000000000E+00 
0.3485378360E+00   0.4114130118E-19 
0.4311044290E+00  -0.1692409061E-17 
0.4843183407E+00   0.3353233703E-17 
We observe that one of the zeros are correct to last 
decimal place and the largest error in the 

remaining zeros is   - . 10
17-0.5x 

 
 8.  Numerical Results for Linear Combination. 
 
Consider (1.2) whose zeros are to be determined. 
Although the zeros of Legender-, Shifted 
Legendre- or Doubly Shifted Legendre 
Polynomials are real and lie in a specific interval, 
the zeros of their linear combination need not to 
be real and may be complex. Sum results of these 
linear combinations of varying number of terms 
are given below: 
 
8.1 Linear Combination of Legender 

Polynomial 
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The computed estimates are:  
Real Part   imaginary Part 
 0.8951466537E+00  0.1824543521E+00 
 0.4602537989E+00  0.3801561966E+00 
-0.1375577237E+00  0.4504238943E+00 
-0.7007230756E+00  0.3561127939E+00 
-0.1043435443E+01  0.1333524611E+00 
-0.1043435443E+01  0.1333524611E+00 
-0.7007230756E+00  0.3561127939E+00 
-0.1375577237E+00  0.4504238943E+00 
 0.4602537989E+00  0.3801561966E+00 
 0.8951466537E+00  0.1824543521E+00 
We observe that all the zeros are complex.  
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8.2 Linear Combination of Shifted Legendre  
Polynomial 
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φφφφφφφ

The computed estimates are  
Real Part   imaginary Part 
0.9324297345E+00   0.3806003375E-01 
0.7457879250E+00   0.1226397926E+00 
0.4632757747E+00   0.1577534282E+00 
0.1731724819E+00   0.1175716178E+00 
0.9895487309E-02  -0.5488715206E-01 
0.9895487309E-02  -0.5488715206E-01 
0.1731724819E+00  -0.1175716178E+00 
0.4632757747E+00  -0.1577534282E+00 
0.9324297345E+00  -0.3806003375E-01 
All the zeros are complex. 
 
8.3 Linear Combination of Doubly Shifted 

Legendre Polynomial 
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The computed estimates are  
Real Part   imaginary Part 
0.4667574331E+00  -0.2159165371E-34 
0.3661671901E+00   0.3118736756E-01 
0.2340185073E+00   0.3648278874E-01 
0.9009704126E-01  -0.1154488685E-01 
0.1768478607E-01   0.1266778523E-01 
0.1768478607E-01  -0.1266778523E-01 
0.9009704126E-01   0.1154488685E-01 
0.2340185073E+00  -0.3648278874E-01 
0.3661671901E+00  -0.3118736756E-01 
0.4594127807E+00  -0.2779679007E-33 
Here only two zeros are real with the largest error 

. 100.2x - -33

 
8. THE IMPLEMENTATION 
 
The FORTRAN subroutine given in the Appendix 
is a direct implementation of the algorithm given 
in 3. Double-length real arithmetic is used 

throughout to allow for a termination criterion 
based on the use of Adams type error bound given 
in 6. If required, starting estimates are taken in the 
form 1(1)n.ki], 0.05 1)/n -(k2exp[ =+π  
Polynomial is scaled using an upper bound on the 
largest zero of (1.1). After the zeros of scaled 
polynomial have been calculated, they are 
transferred back to give zero estimates for original 
polynomial evaluation.  
 ‘Select’ is an integer variable and has 
value 1 if we want to find zeros of Legendre basis 
polynomial equation, 2 if zeros of their linear 
combination equation, and 3 if the zeros of 
monomial basis polynomial equation. 
 Similarly, ‘Kind ‘ is also an integer 
variable and has value 1 for Legendre, 2 for 
Shifted Legendre, and 3 for Doubly Shifted 
Legendre polynomial. If ‘Select’ has value 2, then 
for any value of ‘ Kind ‘, subroutine Lcomb 
transforms (1.2) into the form (1.1). 

 Several different modes of entry 
are possible. Initial estimates may or may not be 
specified. If they are given as rlz(k) + i cmz (k), k 
=1(1)n, the character parameter ans should be ‘y’ 
or ‘Y’. The logical parameter con should be ‘true’ 
, if up-dating of an estimate is to cease once it has 
been detected as having converged; a value ‘false’ 
means that up-dating will continue until all 
estimates are indicated as having converged on the 
same sweep .  

The Legendre Polynomials of odd degree 
have zero root which cause numerical difficulties. 
Tgerefore a logical parameter zflag was 
introduced to separate zero root from the 
polynomial. This parameter is set to ‘ false ‘, if it 
has zero root, i.e. if constant term of the 
polynomial is zero. 

 On exit, the coefficients are 
unaltered . A successful conclusion is indicated by 
icode having the value 1, when the computed root 
estimates are available as rlz(k) + i cmz(k) , 
k=1(1)n. The integer array itusd gives the number 
of iterations to convergence for the individual 
estimates. A value of  -1 for icode  indicates that 
not all the roots have converged within the 
permitted number of iterations ; those that have 
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not converged being shown by the corresponding 
itusd entry 0.  

There are some error exists from the 
subroutine indicated by the parameter iex, which 
normally has value 0. A value of –2 indicates that 
either the leading coefficient in the polynomial is 

0 or the degree is less than 1. A value of-1 
indicates that division by the complex number 0.0 
+ i 0.0 has been attempted within the subroutine. 
There are ten internally used arrays of fixed length 
allowing for the solution of polynomials of 
degrees not greater than 50. 
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APPENDIX 
c  subroutine miehrl calculates zero  
c  estimates using modified improved  
c  Ehrlich method 
   subroutine miehrl(a,n,rlz,cmz,maxit, 
  +itusd,icode,iex,ans,con,kind, 
  +zflag,select) 
 
 
c  attempts to find the zeros of a real 
c  monomial basis polynomial,legendre  
c  basis polynomial and their linear  
c  combination  equations 
c  a -double precision one-dimensional  
c  array of the coefficients 
c  rlz,cmz - double precision array of  
c  initial estimates of realandimaginary  

c  parts of zeros on entry, computed  
c  estimates on exit 
c  maxit-maximum number of iterations  
c  allowed 
c  itusd - i-dimensional integer array  
c  giving no. of iterations to 
convergence  
c  for the individual zero estimates 
c  icode - on successful conclusion has  
c  value 1, otherwise -1 
c  iex - an integer indicating error  
c  conditions, -2 if leading 
c  coefficient is zero or n<2, -1 for  
c  overflow etc 
c  ans- character, if 'y' or'Y' then  
c  initial estimates are available 
c  otherwise they are generated  
c  internally 
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c  con - logical variable which  
c  determines whether estimates are 
c  up-dated after convergence or not, 
c  true means not 
c  zflag-logical variable which  
c  separates the zero root from the 
c  legendre basis polynomial equation 
c  kind -integer,1 if legendre 
polynomial 
c  ,2 if their linear combination   
c  and 3 if monomial basis polynomial 
 
   implicit double precision (a-h,o-z) 
   dimension a(n+1),b(51),rdelta(50), 
  +cdelta(50),rzstar(50),czstar(50), 
  +rp(50),cp(50),rlz(n),cmz(n),iflag(50) 
  +,itusd(n),rpd(51),cpd(51),d(50) 
   character ans 
   logical con,sat,zflag 
 
 if(select.e.2.or.select.e.3)goto8 
 if(.not.(ans.eq.'Y'.or.ans.eq.'y'))then 
      call legpol(a,n,kind) 
 endif 
 
8     if(a(n+1).eq.0.0) then 
        n=n-1 
        zflag = .true. 
      endif 
 
      iex=0 
cleading coeff zero or n<2force exit 
  if (a(1).eq.0.0.or.n.lt.2) then 
    iex=-2 
    return 
  endif 
c initialize parameters 
      np1=n+1 
      icode=1 
      iroot=0 
      do i=1,n 
     itusd(i)=0 
      enddo 
      k1=1 
      k2=n 
      k3=1 
c  copy the coefficients 
      do i=1,np1 
     b(i)=a(i) 
      enddo 
      if (b(1).eq.1.0) goto 1 
c  making leading coefficient unity 
      const=1.0/b(1) 
      do i=1,np1 
     b(i)=b(i)*const 
      enddo 
 

1     if (ans.eq.'Y'.or.ans.eq.'y') goto 
2 
c  find bound on the largest zero 
      call bnd(b,np1,beta) 
c  scale the polynomial to bring zeros 
in unit circle 
      call scale(b,np1,beta) 
c  generate inital estimates round the 
unit circle 
      call gstval(n,rlz,cmz) 
c  set convergence flags 
2     do i=1,n 
     iflag(i)=1 
      enddo 
      do l=1,maxit 
 
c  calculate poly and derive values for  
c  non-converged roots and store 
c  in arrays rp,cp rpd and cpd 
   if (.not.con) iroot=0 
    do 20 i=1,n 
 if (con .and. iflag(i).eq.0) goto 20 
 call evaluate(b,n,rlz(i),cmz(i),rp(i), 
+cp(i),rpd(i),cpd(i),sat) 
     if (sat .and. l.gt.1) then 
    iflag(i)=0 
    iroot=iroot+1 
    itusd(i)=l 
     endif 
     bf=rpd(i)**2+cpd(i)**2 
if (bf.eq.0.0) goto 12 
rdelta(i)=(-rp(i)*rpd(i)-
cp(i)*cpd(i))/bf 
cdelta(i)=(-
cp(i)*rpd(i)+rp(i)*cpd(i))/bf 
c calculate zstar and store inrzstar  
c and czstar 
     rzstar(i)=rlz(i)+rdelta(i) 
     czstar(i)=cmz(i)+cdelta(i) 
20   continue 
     do 500 k=k1,k2,k3 
if (con .and. iflag(k).eq.0) goto 500 
     sr=0.0 
     sc=0.0 
     do 50 j=1,n 
    if (j.eq.k) goto 50 
    ar=rlz(k)-rzstar(j) 
    ac=cmz(k)-czstar(j) 
    bf=ar**2+ac**2 
    if (bf.eq.0.0) goto 12 
    sr=sr+ar/bf 
    sc=sc-ac/bf 
50          continue 
     ar=rdelta(k) 
     ac=cdelta(k) 
     br=ar*sr-ac*sc+1.0 
     bc=ar*sc+ac*sr 
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     bf=br**2+bc**2 
     if (bf.eq.0.0) goto 12 
     rdelta(k)=(ar*br+ac*bc)/bf 
     cdelta(k)=(ac*br-ar*bc)/bf 
     rzstar(k)=rlz(k)+rdelta(k) 
     czstar(k)=cmz(k)+cdelta(k) 
500   continue 
      do i=1,n 
     rlz(i)=rzstar(i) 
     cmz(i)=czstar(i) 
      enddo 
c     reverse the order of updating 
      k4=k1 
      k1=k2 
      k2=k4 
      k3=-k3 
      if (iroot.eq.n) goto 13 
      enddo 
 
      icode=-1 
13if(.not.(ans.eq.'Y'.or.ans.eq.'y'))the
n 
     do i=1,n 
    rlz(i)=rlz(i)*beta 
    cmz(i)=cmz(i)*beta 
     enddo 
      endif 
      if (zflag) then 
 n = n + 1 
 rlz(n) = 0. 
 cmz(n) = 0. 
 itusd(n)=0 
      endif 
      return 
 
c     abnormal exit - overflow 
12    iex=-3 
      return 
      end 
csubroutine to evaluate poly and deriv 
   subroutine evaluate(a,n,x,y,rp,cp,rdp 
  +,cdp,sat) 
   double precision a(n+1),x,y,rp,cp, 
  +rdp,cdp,b1,b2,b3,a1,a2,a3,p,q,c, 
  + t,tol 
      logical sat 
      integer n,i 
      tol=2.0**(-53) 
      sat=.false. 
      p=-2.0*x 
      q=x*x+y*y 
      t=dsqrt(q) 
      b2=0.0 
      a2=0.0 
      b1=1.0 
      a1=1.0 
      c=0.8 
      do i=1,n-2 

     a3=a2 
     a2=a1 
     a1=a(i+1)-p*a2-q*a3 
     c=t*c+dabs(a1) 
     b3=b2 
     b2=b1 
     b1=a1-p*b2-q*b3 
      enddo 
      a3=a2 
      a2=a1 
      a1=a(n)-p*a2-q*a3 
      rp=a(n+1)+x*a1-q*a2 
      cp=a1*y 
      rdp=a1-2.0*b2*y*y 
      cdp=2.0*y*(b1-x*b2) 
      c=t*(t*c+dabs(a1))+dabs(rp) 
      sat=dsqrt(rp*rp+cp*cp).lt. 
     +(2.0*dabs(x*a1)-8.0*(dabs(rp)+ 
     +dabs(a1)*t)+10.0*c)*tol 
return 
      end 
csubroutineto find bound on largest zero 
      subroutine bnd(b,n,beta) 
      double precision b(n),beta,xm,xm1 
      integer n,i 
      xm=abs(b(1)) 
      do i=2,n 
     xm1=abs(b(i))**(1.0/i) 
     xm=dmax1(xm,xm1) 
      enddo 
      beta=2.0*xm 
      return 
      end 
csubrout tobring zeros within unit 
circle 
      subroutine scale(b,n,beta) 
      double precision b(n),beta,t,t1 
      integer n,i 
      t=1.0/beta 
      t1=1.0 
      do i=2,n 
     t1=t1*t 
     b(i)=b(i)*t1 
      enddo 
      return 
      end 
csubrout to generate initial estimates 
      subroutine gstval(n,r,c) 
      double precision r(n),c(n),x,a 
      integer n,i 
      a=4.0*atan(1.0)/n 
      do i=1,n 
     x=2*(i-1)*a+0.05 
     r(i)=cos(x) 
     c(i)=sin(x) 
      enddo 
      return 
      end 
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      subroutine legpol(a,n,kind) 
      implicit double precision(a-h,o-z) 
      dimension a(n+1),g(3,50),p(51,50) 
      do m=2,n 
       x=float(m) 
       g(3,m)=(1.0-x)/x 
       if(kind.eq.2.or.kind.eq.3) g(2,m) 
      +=(1.0-2.0*x)/x 
      if(kind.eq.1)then 
       p(1,1)=1.0 
       p(2,1)=0.0 
       p(1,2)=3.0/2.0 
       p(2,2)=0.0 
       p(3,2)=-1.0/2.0 
       g(1,m)=(2.0*x-1.0)/x 
       g(2,m)=0.0 
 elseif(kind.eq.2) then 
       p(1,1)=2.0 
       p(2,1)=-1.0 
       p(1,2)=6.0 
       p(2,2)=-6.0 
       p(3,2)=1.0 
       g(1,m)=(4.0*x-2.0)/x 
       elseif(kind.eq.3)then 
       p(1,1)=4.0 
       p(2,1)=-1.0 
       p(1,2)=24.0 
       p(2,2)=-12.0 
       p(3,2)=1.0 
       g(1,m)=4.0*(2.0*x-1.0)/x 
       endif 
     p(1,m)=g(1,m)*p(1,m-1) 
     p(2,m)=g(1,m)*p(2,m-1)+g(2,m) 
        + *p(1,m-1) 
       do i=3,m 

     p(i,m)=g(1,m)*p(i,m-1)+g(2,m) 
      +*p(i-1,m-1)+g(3,m)*p(i-2,m-2) 
       enddo 
     p(m+1,m)=g(2,m)*p(m,m-       
          1)+g(3,m) 
     + *p(m-1,m-2) 
       enddo 
       do k=1,n+1 
     a(k)=p(k,n) 
       enddo 
       print*,'coeffts are',(a(i), 
     + i=1,n+1) 
      return 
      end 
csubroutine cto cdetermine the coefficients  
cof cmonomial basis polynomial corresponding  
cto a linear combination of legendre  
cbasis polynomials  
    subroutine lcomb(a,d,n,kind) 
    implicit double precision(a-h,o-z) 
    dimension a(n+1),d(n+1),p(51),c(51) 

do I=1,n+1 
 a(I)=0.0 
do j=1,I 
 k1=I-j+1 
 k2=n-j+1 

call legpol(p,k2,kind) 
c(j)=d(j)*p(k1) 
a(j)=a(i)+c(j) 

 enddo 
endo 
return 
end 
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