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Abstract: An algorithm based on modified improved Ehrlich method is developed
which using real arithmetic could find all the zeros of Legendre-, Shifted Legendre- and
Doubly Shifted Legendre polynomials, simultaneously, using a three term recurrence
relation. The only information required is degree of the polynomial. The algorithm also
finds simultaneously all the zeros of a linear combination of these polynomials, requiring
information about the number of terms and the coefficients in the linear combination. The
same algorithm works for finding simultaneously all the zeros of real polynomials
requiring information about its degree and coefficients.
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1. INTRODUCTION

An algorithm'? was designed for finding
simultaneously all the zeros of a real as well as
complex polynomials, expressed in monomial
basis. The two algorithms required information
only about degree and coefficients of the
polynomial. Six methods belonging to the Durand-
Kerner and Ehrlich families™**’were compared
numerically in the above mentioned papers. It was
found that the modified improved Ehrlich method
was the best amongst the six methods considered.
Consider a real polynomial of degree n

n n-1
az ta,z *t-ta.z ta, (1.1)
, where ai,i =0,1,...n, are real. Occasionally, this

explicit representation of the polynomial may not
be immediately available. For example, it may be
required to find the zeros of a determinant with
polynomial entries. In this work, therefore,
consideration is given to the ways in which an
algorithm for finding the zeros of a real
polynomial expressed in the monomial basis could
be modified to find the zeros of a polynomial
expressed in the © Legendre basis’ and their linear
combination.

The linear combination of the Legendre
basis polynomial is of the form

p. (@) =21 0d 4 (2) (1.2)
where ¢ (z) is the rth degree Legendre or

Shifted Legendre or Doubly Shifted Legendre
polynomial and 4 is a real number.

We have tested the algorithm for finding
simultaneously all the zeros of a real polynomial
over 250 polynomials of varying degrees' .

The basis polynomial is discussed in
Section 2 whereas, the modified improved Ehrlich
method is given in algorithm form in Section 3. In
Section 4, some ways of generating initial
estimates considered whilst termination criterion
for the implemented algorithm and polynomial
evaluation is described in Sections 5 and 6.
Sections 7 and 8 contains numerical results for
Legendre-, Shifted Legendre- and Doubly Shifted
Legendre  polynomials and  their linear
combinations. Finally, Section 9 contains a
description of the form of the implemented
algorithm, which is given as a FORTRAN
procedure in the appendix.

2. THE BASIS POLYNOMIAL

The basis polynomial® considered will
form polynomials {¢5r(z)}> , where

* Author to receive correspondence
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¢r(z) is of exact degree r in z,r-o12..The
family will be generated by
¢-1(Z) = ¢0(Z) &

P (z)=(z g1k + gz,k+1) Py (z)+ gs,k+1¢k_1(z) ’
2.1)
k> O,gl’k+1 # 0.

Then {y (2)},r = 01....n, form a linearly independent

set and hence provides a basis for the

representation of any polynomial of degree n.
A number of basis can be generated in this way,
but we consider here the following three bases:

1) The Legender Polynomials
i)
6@ =p @
2k-1
810~ 1’gl,k - Lok 0
k

k-1
k

and g3k=— fork>1

iii) The Shifted Legendre Polynomials

5@ =p *@)

4k -2
80 l’gl,k - Lok
k

2k-1

k

and g, = _T- fork =1

v) The Doubly Shifted Polynomial

$.(2)=p *(2)

4(k-2 -
g0=18x= %,gz,k = 2k-1
and g;, = % fork >1

These basis are the examples of orthogonal basis
and of course, any orthogonal basis is generated
by a three-term recurrence of the form (2.1). The
intervals of orthogonality of Legendre-, Shifted

Legendre- and Double Shifted Legendre
polynomials are [-1,1], [0,1] and [0,1/2]
respectively.

3. ALGORITHM FOR MODIFIED
IMPROVED EHRLICH METHOD

We give the algorithm for updating a set of
zero estimates 2157227, 1O obtain improved
7, - Within the algorithm, the
polynomial is denoted by p(z) and its derivative
by p'(2).

We assume some initial ordering of the

indices, say (1,2...n) and each stage of algorithm
is extended for i running through these values.

@ A=-p()/P(z)

I
(i) 2, =z t4y

estimates AR

(iii)AZi=Al/{1+Al g 1 *]

k=1k=#i —
Zi Zk

) * +A, k<i
Wi th 5 = {Zk Zk
k + A ki
Zx Zk> < 7!
(V) 7=+,
(v) The ordering of the indices is reversed before
the next iteration and this alternation continues

until convergence.
4. GENERATION OF INITIAL ESTIMATES

Consider the polynomial (1.1) having zeros

Henrici 9, states that these roots
Beta

(4.1)

Z1°Z22° " Zn "

all lie inside a
1/k

circle of radius

ZII}(ax
1<k<n
where Beta is a bound on the largest zero of a
polynomial (1.1). It is a well known result "that if

p(z) has a zero inside the circle |z| < p p(pz)has

ak/ao

a zero inside the unit circle. This result is true for
both real and complex polynomials. The
polynomial (1.1) was therefore scaled using the
bound (4.1) to bring all of its zeros into the unit
circle. The arbitrary initial estimates for the
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zeros of the polynomial (1.1) were taken to be the
points uniformly spaced r ound the unit circle
having the centre at the origin, that is, the points
exp[2z(k -1)/n 1] in the complex plane. 0.05 was
added to the exponent
symmetric  distributions
numerical difficulties.

argument to avoid
which may cause

5. CONVERGENCE CRITERION

This is provided by computing a bound on the
accumulated round off error in the computed value
of the polynomial. When this indicates that the
later value can be fully accounted for by rounding
error, the iterative process is terminated, as there
may be no useful information available from
which to determine an improved estimate. Bounds
of this type have been given by Adams '°,Peters
and Wilkinson '' and Grant and Hitchins '2. In
practice, they have been found to be extremely

reliable and accurate, p articularly, if one or two

extra iterations are performed to allow for the

conservative nature of the bound. Their major

disadvantage is the cost of evaluating them.

6. POLNOMIAL EVALUATION

As ultimately, we are getting polynomials with
real coefficients only, they and their derivatives
can be evaluated at « +1 f by executing the

algorithm
P:-2a,q=a2+ﬂ2,
bo = ao’bi = a; " Pby»
co~ bo’ci = bi " Pcyo
by = ar ~Pbr; b0k =20n-1,
ck = br " Pciy ey pok =200 -3,
b = an T by " 9bass
Cn2 = bno " Yens

when pn(a+iﬂ)=bn+iﬂbn_l
. 2
p’n (a +1 ﬂ) = (_2 ﬂ Cn-3 + bn—l)

+120 (a Cost Cn_2).

and

Following Adams'®, abound on the error can be
found using

e~ O‘S‘bo

€k = \/aek-l +

when the process is terminated if

2

bylsk = 1(Dn,

—8(b,

b, @+ip) < Qav,.

+\/gbn—l)+loen)p

which is a machine constant, the smallest number
which when added to one produces a change. In

the numerical result p was taken to be 2_53.

7. NUMERICAL RESULTS

Some results of Legendre Polynomials of
varying degrees are discussed here.

7.1 Legendre Polynomials

The zeros of Legendre polynomial are real
and always lie in the interval [-1,1].
Estimated zeros of Legendre Polynomials
of degree 15, using implemented algorithm
are given below:

POLYNOMIAL OF DEGREE 15

Real Part imaginary Part
0.9879925180E+00 0.7177876729E-38
0.8482065834E+00 -0.5262173930E-37
0.5709721726E+00 0.0000000000E+00
0.2011940940E+00 0.0000000000E+00

-0.3941513471E+00 0.0000000000E+00

-0.7244177314E+00 0.0000000000E+00

-0.9372733924E+00 0.0000000000E+00

-0.9879925180E+00 0.2888047299E-36

-0.8482065834E+00 0.0000000000E+00

-0.5709721726E+00 0.0000000000E+00

-0.2011940940E+00 0.0000000000E+00
0.3941513471e+00 0.0000000000E+00
0.7244177314E+00 -0.1128474577E-35
0.9372733924E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00
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We observe the eleven zeros are correct to the last

decimal place and the largest error in the
remaining zeros is - 0.1x 10'35 .

7.2 Shifted Legendre Polynomials

The zeros of Shifted Legendre polynomial
are real and always lie in the interval [0,1].
Estimated zeros of Shifted Legendre Polynomials
of degree 15, using implemented algorithm are

0.3001870495E-02
0.1568165190E-01
0.6889556716E-01
0.1514621632E+00
0.2500000000E+00
0.3485378360E+00
0.4311044290E+00
0.4843183407E+00

-0.1194076566E-31
-0.5926454613E-17
-0.1625053465E-27
0.3283302196E-27
0.0000000000E+00
0.4114130118E-19
-0.1692409061E-17
0.3353233703E-17

given below:

POLYNOMIAL OF DEGREE 15

Real Part
0.9939962629E+00
0.9241033056E+00
0.7854860889E-+00
0.6055970472E+00
0.3994029530E+00
0.2145139137E+00
0.7589670829E-01
0.6003740990E-02
0.3136330380E-01
0.1377911343E+00
0.3029243265E+00
0.50000000000E+00
0.6970756723E+00
0.8622088582E+00
0.9686366869E-+00

imaginary Part
-0.161587134E-26
-0.5835834238E-31
-0.5547422732E-27
-0.3118639581E-27
-0.1724419894E-28
0.2310514080E-31
0.1880790961E-36
0.0000000000E+00
0.0000000000E+00
0.0000000000E+00
-0.1764593345E-33
0.0000000000E+00
0.1371926612E-24
0.1461664596E-25
-0.5844907863E-32

We observe that one of the zeros are correct to last
decimal place and the largest error in the

remaining zeros is - 0.5x 10'17 .

8. Numerical Results for Linear Combination.

Consider (1.2) whose zeros are to be determined.
Although the zeros of Legender-, Shifted
Legendre- or Doubly Shifted Legendre
Polynomials are real and lie in a specific interval,
the zeros of their linear combination need not to
be real and may be complex. Sum results of these
linear combinations of varying number of terms
are given below:

8.1 Linear Combination of
Polynomial

Legender

G20, T3p, T4, 159,104 179,
+8¢3+9¢2+10¢1+11¢0 =0

7.3 Doubly Shifted Legendre Polynomials

The zeros of Doubly Shifted Legendre
polynomial are real and always lie in the interval
[0,1/2]. Estimated zeros of Shifted Legendre
Polynomials of degree 15, using implemented
algorithm are given below:

POLYNOMIAL OF DEGREE 15

Real Part
0.4969981313E+00
0.4620516524E+00
0.3927430450E+00
0.3002985237E+00
0.1997014765E+00
0.1072569568E+00
0.3794835415E-01

imaginary Part
-0.1222581212E-21

0.2626612176E+18
-0.4086428332E-19
0.5125362133E-21
-0.1802783196E-21
0.8028836967E-24
-0.3559734835E-27

The computed estimates are:

Real Part
0.8951466537E+00
0.4602537989E+00

-0.1375577237E+00

-0.7007230756E+00

-0.1043435443E+01

-0.1043435443E+01

-0.7007230756E+00

-0.1375577237E+00
0.4602537989E+00
0.8951466537E+00

imaginary Part

0.1824543521E+00
0.3801561966E+00
0.4504238943E+00
0.3561127939E+00
0.1333524611E+00
0.1333524611E+00
0.3561127939E+00
0.4504238943E+00
0.3801561966E+00
0.1824543521E+00

We observe that all the zeros are complex.
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8.2 Linear Combination of Shifted Legendre

Polynomial

36,140, T5p, 104, +79 +6g.+74,
+5¢3+4¢2+3¢1+7¢0:0

The computed estimates are

Real Part

0.9324297345E+00
0.7457879250E+00
0.4632757747E+00
0.1731724819E+00
0.9895487309E-02
0.9895487309E-02
0.1731724819E+00
0.4632757747E+00
0.9324297345E+00

imaginary Part
0.3806003375E-01
0.1226397926E+00
0.1577534282E+00
0.1175716178E+00
-0.5488715206E-01
-0.5488715206E-01
-0.1175716178E+00
-0.1577534282E+00
-0.3806003375E-01

All the zeros are complex.

8.3 Linear Combination of Doubly Shifted
Legendre Polynomial

56, T00, T 79, T8p, 199 + 79 +8p,
+6¢3+5¢2+4¢1+3¢0 =0

The computed estimates are

Real Part
0.4667574331E+00
0.3661671901E+00
0.2340185073E+00
0.9009704126E-01
0.1768478607E-01
0.1768478607E-01
0.9009704126E-01
0.2340185073E+00
0.3661671901E+00
0.4594127807E+00

imaginary Part

-0.2159165371E-34
0.3118736756E-01
0.3648278874E-01
-0.1154488685E-01
0.1266778523E-01
-0.1266778523E-01
0.1154488685E-01
-0.3648278874E-01
-0.3118736756E-01
-0.2779679007E-33

Here only two zeros are real with the largest error

-0.2x107".

8. THE IMPLEMENTATION

The FORTRAN subroutine given in the Appendix
is a direct implementation of the algorithm given
in 3. Double-length real arithmetic is used

COMBINATION OF LEGENDRE POLYNOMIAL

throughout to allow for a termination criterion
based on the use of Adams type error bound given
in 6. If required, starting estimates are taken in the
form exp[27(k-1)n+0.05i],k =1(1)n.
Polynomial is scaled using an upper bound on the
largest zero of (1.1). After the zeros of scaled
polynomial have been calculated, they are
transferred back to give zero estimates for original
polynomial evaluation.

‘Select’ is an integer variable and has
value 1 if we want to find zeros of Legendre basis
polynomial equation, 2 if zeros of their linear
combination equation, and 3 if the zeros of
monomial basis polynomial equation.

Similarly, ‘Kind ¢ is also an integer
variable and has value 1 for Legendre, 2 for
Shifted Legendre, and 3 for Doubly Shifted
Legendre polynomial. If ‘Select’ has value 2, then
for any value of ¢ Kind °, subroutine Lcomb
transforms (1.2) into the form (1.1).

Several different modes of entry
are possible. Initial estimates may or may not be
specified. If they are given as rlz(k) + i cmz (k), k
=1(1)n, the character parameter ans should be ‘y’
or ‘Y’. The logical parameter con should be ‘true’
, if up-dating of an estimate is to cease once it has
been detected as having converged; a value ‘false’
means that up-dating will continue until all
estimates are indicated as having converged on the
same sweep .

The Legendre Polynomials of odd degree
have zero root which cause numerical difficulties.
Tgerefore a logical parameter zflag was
introduced to separate zero root from the
polynomial. This parameter is set to  false *, if it
has zero root, ie. if constant term of the
polynomial is zero.

On exit, the coefficients are
unaltered . A successful conclusion is indicated by
icode having the value 1, when the computed root
estimates are available as rlz(k) + 1 cmz(k) ,
k=1(1)n. The integer array itusd gives the number
of iterations to convergence for the individual
estimates. A value of -1 for icode indicates that
not all the roots have converged within the
permitted number of iterations ; those that have
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not converged being shown by the corresponding
itusd entry 0.

There are some error exists from the

subroutine indicated by the parameter iex, which
normally has value 0. A value of -2 indicates that
either the leading coefficient in the polynomial is
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computed

estimates on exit

maxit-maximum number of iterations
allowed

itusd - i-dimensional integer array
giving no. of iterations to

convergence

QOO0

for the individual zero estimates
icode - on successful conclusion has
value 1, otherwise -1

iex - an integer indicating error
conditions, -2 if leading
coefficient is zero or n<2,
overflow etc

ans- character, if 'y' or'Y' then
initial estimates are available
otherwise they are generated
internally

-1 for
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con - logical variable which

determines whether estimates are

up-dated after convergence or not,

true means not

zflag-logical variable which

separates the zero root from the

legendre basis polynomial equation

kind -integer,l if legendre
olynomial

,2 if their linear combination

and 3 if monomial basis polynomial

[oRNoIo RO RO NN NNO RO RO RO NNe!

implicit double precision (a-h,o-2z)
dimension a(n+l),b(51),rdelta(50),
+cdelta (50),rzstar (50),czstar (50),
+rp (50) ,cp(50),rlz (n),cmz (n),iflag(50)
+,itusd (n), rpd (51),cpd(51),d(50)
character ans

logical con,sat,zflag

if (select.e.2.0or.select.e.3)goto8
if(.not. (ans.eq.'Y'.or.ans.eq.'y')) then
call legpol (a,n, kind)

endif
8 if(a(n+l) .eq.0.0) then
n=n-1
zflag = .true.
endif
iex=0

cleading coeff zero or n<2force exit
if (a(l).eq.0.0.0r.n.1t.2) then
iex=-2
return
endif
c initialize parameters
npl=n+1l
icode=1
iroot=0
do i=1,n
itusd(i)=0
enddo
kl=1
k2=n
k3=1
c copy the coefficients
do i=1,npl
b(i)=a (i)
enddo
if (b(l).eqg.1.0) goto 1
c making leading coefficient unity
const=1.0/b (1)
do i=1,npl
b(i)=b (i) *const
enddo

1 if (ans.eq.'Y'.or.ans.eq.'y') goto
2
c find bound on the largest zero

call bnd(b,npl,beta)
c scale the polynomial to bring zeros
in unit circle

call scale(b,npl,beta)
c generate inital estimates round the
unit circle

call gstval(n,rlz,cmz)
c set convergence flags
2 do i=1,n

iflag(i)=1
enddo
do 1=1,maxit

c calculate poly and derive values for
non-converged roots and store
c 1in arrays rp,cp rpd and cpd
if (.not.con) iroot=0
do 20 i=1,n
if (con .and. iflag(i).eqg.0) goto 20
call evaluate(b,n,rlz(i),cmz (i), rp(i),
+cp (1), rpd (i), cpd (i), sat)
if (sat .and. l.gt.l) then

Q

iflag(i)=0

iroot=iroot+l

itusd (i) =1
endif

bf=rpd (i) **2+cpd (i) **2
if (bf.eq.0.0) goto 12

rdelta(i)=(-rp(i)*rpd (i) -
cp (i) *cpd(i)) /bf
cdelta(i)=(-

cp (i) *rpd (i) +rp (i) *cpd(i)) /bf
c calculate zstar and store inrzstar
c and czstar
rzstar(i)=rlz (i)+rdelta (1)
czstar (i)=cmz (i) +cdelta (1)
20 continue
do 500 k=kl1,k2,k3
if (con .and. iflag(k).eqg.0) goto 500
sr=0.0
sc=0.0
do 50 j=1,n
if (j.eqg.k) goto 50
ar=rlz (k) -rzstar(j)
ac=cmz (k) —czstar (J)
bf=ar**2+ac**2
if (bf.eq.0.0) goto 12
sr=sr+ar/bf
sc=sc-ac/bf
50 continue
ar=rdelta (k)
ac=cdelta (k)
br=ar*sr-ac*sc+1.0
bc=ar*sc+ac*sr
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bf=br**2+bc**2 a3=a?2
if (bf.eq.0.0) goto 12 az=al
rdelta (k)= (ar*br+ac*bc) /bf al=a (i+1l) -p*a2-g*a3
cdelta (k)= (ac*br-ar*bc) /bf c=t*c+dabs (al)
rzstar (k)=rlz (k) +rdelta (k) b3=b2
czstar (k)=cmz (k) +cdelta (k) b2=bl
500 continue bl=al-p*b2-g*b3
do i=1,n enddo
rlz (i)=rzstar (i) a3=az2
cmz (i) =czstar (i) az=al
enddo al=a (n) -p*a2-g*a3
c reverse the order of updating rp=a (n+l) +x*al-g*a2
k4=k1l cp=al*y
kl=k2 rdp=al-2.0*b2*y*y
k2=k4 cdp=2.0*y* (bl-x*b2)
k3=-k3 c=t* (t*c+dabs (al)) +dabs (rp)
if (iroot.eg.n) goto 13 sat=dsqgrt (rp*rp+cp*cp) .1lt.
enddo +(2.0*dabs (x*al)-8.0* (dabs (rp) +
+dabs (al) *t)+10.0*c) *tol
icode=-1 return
13if(.not. (ans.eq.'Y'.or.ans.eq.'y"')) the end
n csubroutineto find bound on largest zero
do i=1,n subroutine bnd (b, n,beta)
rlz(i)=rlz (i) *beta double precision b (n),beta, xm, xml
cmz (i) =cmz (i) *beta integer n,i
enddo xm=abs (b (1))
endif do i=2,n
if (zflag) then xml=abs (b (1))**(1.0/1)
n=n-++1 xm=dmaxl1 (xm, xml)
rlz(n) 0. enddo
cmz (n) = 0. beta=2.0*xm
itusd (n)=0 return
endif end
return csubrout tobring zeros within unit
¢} abnormal exit - overflow subroutine scale (b, n,beta)
12 iex=-3 double precision b (n),beta,t,tl
return integer n,1i
end t=1.0/beta
csubroutine to evaluate poly and deriv t1=1.0
subroutine evaluate(a,n,x,vy,rp,cp, rdp do i=2,n
+,cdp, sat) tl=tl*t
double precision a(n+l),x,vy,rp,cCp, b(i)=b (i) *tl
+rdp,cdp,bl,b2,b3,al,a2,a3,p,q9,c, enddo
+ t,tol return
logical sat end

integer n,1i
tol=2.0**(-53)
sat=.false.

csubrout to generate initial estimates

subroutine gstval(n,r,c)
double precision r(n),c(n),x,a

p=-2.0*x integer n,i
q=x*x+y*y a=4.0*atan(1.0)/n
t=dsqgrt (q) do i=1,n

b2=0.0 x=2*(1-1) *a+0.05
a2=0.0 r(i)=cos (x)
bl=1.0 c(i)=sin(x)
al=1.0 enddo

c=0.8 return

do i=1,n-2 end
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subroutine legpol (a,n, kind) p(i,m)=g(l,m)*p(i,m-1)+g(2,m)
implicit double precision(a-h,o-z) +*p(1i-1,m-1)+g(3,m) *p (i-2,m-2)
dimension a(n+1),g(3,50),p(51,50) enddo
do m=2,n p(m+l,m)=g(2,m)*p (m, m-
x=float (m) 1)+g(3,m)

g(3,m)=(1.0-x)/x + *p(m-1,m-2)
if(kind.eqg.2.0r.kind.eq.3) g(2,m) enddo

+=(1.0-2.0*x) /x do k=1,n+l1

lf(klnd eq. l)then a(k)=p(k,n)

p(l =1.0 enddo

p(2,l) 0.0 print*, 'coeffts are', (a(i),
p(1,2)=3.0/2.0 + i=1,n+1)

p(2,2)=0.0 return

p(3,2)=-1.0/2.0 end

g(l,m)=(2.0*x-1.0)/x csubroutine cto cdetermine the coefficients
g(2,m)=0.0 cof cmonomial basis polynomial corresponding
elseif (kind.eqg.2) then cto a linear combination of legendre
p(l,1)=2.0 cbasis polynomials

p(2,1)=-1.0 subroutine lcomb (a,d,n, kind)
p(1,2)=6.0 implicit double precision(a-h,o0-z)
p(2,2)=-6.0 dimension a(n+l),d(n+l),p(51),c(51)
p(3,2)=1.0 do I=1,n+1

g(1,m)=(4.0%x-2.0) /x . a(1)=0.0

elseif (kind.eq.3)then do j=1,1 .

p(1,1)=4.0 kl=I-3+1

p(2,l):—l.O k2=n—j+l

p(1,2)=24.0 call legpol (p, k2,kind)
p(2,2)=-12.0 c(3)=d(j) *p(kl)

p(3,2)=1.0 a(j)=a(i)+c(3)
g(1,m)=4.0%(2.0*x-1.0) /x enddo

endif endo

p(1,m)=g(1,m)*p(l,m-1) return
p(2,m) =g (1,m) *p (2,m-1) +g (2,m) end
+ *p(llm_l)
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