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Abstract: An algorithm based on modified improved Ehrlich method is developed 
which finds simultaneously all the zeros of Chebyshev polynomials of first and second 
kind, the Chebyshev polynomials are generated by a three term recurrence relation. The 
only information required is degree of the polynomial. The same algorithm works for 
finding simultaneously all the zeros of real polynomials requiring information about its 
degree and coefficients. 
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1. INTRODUCTION 
 

  An algorithm1,2 was designed for finding 
simultaneously all the zeros of a real as well as 
complex polynomials, expressed in monomial 
basis. The two algorithms required information 
only about degree and coefficients of the 
polynomial. Six methods belonging to the Durand-
Kerner and Ehrlich families3,4,5,6,7 were compared 
numerically in the above mentioned papers. It was 
found that the modified improved Ehrlich method 
was the best amongst the six methods considered. 
Here an algorithm based on modified improved 
Ehrlich method is developed for finding 
simultaneously all the zeros of Chebyshev 
polynomials of first and second kind, the only 
requirement being that the Chebyshev polynomial 
should be generated by a three term recurrence 
relation8 which is described in Section 2. 

The generalised Chebyshev polynomial of 
degree n would be a real polynomial of the form  

aza...zaza)z(p n1-n

1-n

1

n

0n
++++=           (1.1) 

, where a are real. The implemented 
algorithm also works for finding simultaneously 
all the zeros of a real polynomial, and has already 
been tested on over 250 polynomials of varying 
degrees
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1 .  The modified improved Ehrlich method 
is given in an algorithm form in Section 3. In 

Section 4, a way of generating initial estimates is 
described where as termination criterion and 
polynomial evaluation is discussed in Sections 5 
and 6 respectively. 

Section 7 contains some discussion on the 
results of Chebyshev polynomials of first and 
second kind of varying degrees. Section 8 contains 
a description of the form of the implemented 
algorithm, which is given as a FORTRAN 
procedure in the appendix. 
         
2. THE BASIS POLNOMIAL 
 
 The basis polynomial8 considered will 
form polynomials { , where  }(z)
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Then form a linearly 
independent set and hence provides a basis for the 
representation of any polynomial of degree n. 
Many basis can be generated in this way, but we 
consider here the following two basis: 
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(i) The Chebyshev polynomials of the first 
kind 
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(ii) The Chebyshev polynomials of the 
second kind 
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These two bases are the examples of 
orthogonal basis and, of course any orthogonal 
basis is generated three-term recurrence of the 
form (2.1). The intervals of orthogonality of the 
two bases are [-1,1]. These two bases will be 
covered in the implementation of the algorithm 
considered. 
 
3.  ALGORITHM FOR MODIFIED     
     IMPROVED EHRLICH METHOD 
 

We give the algorithm for updating a set of 
zero estimates to obtain improved 
estimates . Within the algorithm, the 
polynomial is denoted by  and its derivative 
by .  
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We assume some initial ordering of the 
indices, say (1,2…n) and each stage of algorithm 
is extended for i running through these values. 
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(v) The ordering of the indices is reversed    

      before the next iteration and this alternation    
      continues until convergence. 
 
4. GENERATION OF INITIAL ESTIMATES 
        
       Consider      the     polynomial     (1.1)    
having zeros .  Henrici z,...,z,z n21

9,     states  that  
these roots all lie inside  a  circle  of   radius   Beta         
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where  Beta   is  a bound  on  the largest  zero of  a 
polynomial  (1.1).  It is  a well known result10  that 
if  has a zero inside the circle   p(z) ρ≤z  

z)p(ρ has a zero inside the unit circle.This result is 
true  for   both    real   and   complex polynomial                      
The   polynomial   (1.1)   was therefore,   scaled 
using  the bound  (4.1)  to bring  all of  its   zeros 
into the  unit circle. The arbitrary  initial  
estimates for the  zeros of the polynomial (1.1) 
were taken to be the  points uniformly   spaced 
round  the   unit  circle   having the   centre   at 
the         origin,       that        is ,      the          
points  exp[ i]1)/n  -(k2π  in  the  complex  plane. 
0.05 was added to the exponent argument   to  
avoid symmetric distributions which may cause 
numerical difficulties. 

 
5. CONVERGENCE CRITERION 
 
 This  is   provided  by  computing  a Bound  
on   the   accumulated    round     off     error in the  
computed    value   of   the polynomial.When   this  
indicates    that    the   later    value can   be    fully  
accounted   for    by   rounding error,  the  iterative  
process  is  terminated,  as there  may  be no useful  
information   available from   which  to  determine  
an  improved estimate. Bounds  of  this  type have  
been  given   by Adams11,  Peters  and Wilkinson12  
and   Grant and   Hitchins 13.   In    practice  ,  they  
have   been found   to  be   extremely  reliable  and  
accurate,  particularly,    if   one   or   two      extra  
iterations   are     performed     to   allow   for    the 
conservative  nature  of  the    bound.  Their  major 
disadvantage is the cost of evaluating them. 
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6. POLNOMIAL EVALUATION 
 

As ultimately, we are getting polynomials with 
real coefficients only, they and   their derivatives 
can be evaluated at βα  i   +  by executing the 
algorithm 
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Following Adams2, a bound on the error can be 
found using 
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which is a machine constant, the smallest number 
which when added to one produces a change. In 
the numerical result ρ was taken to be  .2

-53

 
7. NUMERICAL RESULTS 
 

The zeros of Chebyshev polynomials of first 
and second kind are real and always lie in[-1,1]. A 
discussion on some estimated zeros of Chebyshev 
polynomials of first and second kind of varying 
degrees using the implemented algorithm is given 
below: 

 
 
 

 

7.1 Estimated Zeros of Chebyshev       
      Polynomials of First Kind 
 
Polynomial of degree 15 
Real Part     imaginary Part 
 0.7431448255E+00  -0.9358454147-113 
-0.2079116908E+00   0.0000000000E+00 
-0.8660254038E+00   0.1029511518E-83 
-0.9510565163E+00  -0.1034073842-105 
-0.4067366431E+00  -0.9936008577-112 
 0.5877852523e+00   0.1005382342E-86 
 0.9945218954E+00  -0.2010356545-110 
 0.9510565163E+00   0.0000000000E+00 
 0.4067366431E+00 -0.4735102032E-91 
-0.5877852523E+00 -0.1066044944E-91 
-0.9945218954E+00 -0.4272697189E-91  
-0.7431448285E+00 -0.6380428220E-89 
 0.2079116908E+00 -0.1123622325E-93 
 0.8660454038E+00  0.0000000000E+00 
 0.0000000000E+00  0.0000000000E+00 

Here, four zeros of polynomial  are correct 
to the last decimal place and the largest error in 
the remaining zeros is 0.1x10 . 83−

 
Polynomial of Degree 20 
Real Part                  Imaginary Part   
 0.760405965E+00  -0.2081566379E-70 
 0.2334453639E+00  -0.4766448662E-87 
-0.3826834324E+00  -0.5253732430E-84 
-0.8526401644E+00  -0.1743652001E-79 
-0.9969173337E+00   0.3111507639E-60 
-0.7604059656E+00  -0.1602604814E-70 
-0.2334453639E+00  -0.8433758355E-80 
 0.3826834324E+00  -0.4138123923E-85 
 0.8526401644E+00  -0.8542112537E-77 
 0.9723699204E+00   0.0000000000E+00 
 0.9238795325E+00   0.0000000000E+00 
 0.5224985647E+00  -0.2027144756E-75 
-0.7845909573E-01   0.0000000000E+00 
-0.6494480483E+00   0.0000000000E+00 
-0.9723699204E+00   0.0000000000E+00 
-0.9238795325E+00  -0.1982483825E-74 
-0.5224985647E+00   0.0000000000E+00 
 0.7845909573E-01   0.0000000000E+00 
 0.6494480483E+00  -0.1244603056E-59 
 0.9969173337E+00   0.3262652234E-54 
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We observe that seven zeros of polynomial 
of degree 20 are correct to the last decimal place 
and the largest error in the remaining zeros is 
0.3x10 .  54−

 
7.2  Estimated Zeros of Chebyshev       
       Polynomials of Second Kind 
 
Polynomial of degree 15 
Real Part  imaginary Part 
 0.7071067812E+00 -0.9762249700E-99 
-0.1950903220E+00  0.00000000000E+00 
-0.8314696123E+00  0.1256727927E-87 
-0.9238795325E+00 -0.4299069269E-93 
-0.3826834324E+00 -0.1513758426-102 
 0.5555702330E+00 -0.9882804745E-99 
 0.9807852804E+00 -0.1563865384E-97 
 0.9238795325E+00   0.0000000000E+00 
 0.3826834324E+00   0.00000000000E+00 
-0.5555702330E+00   0.9588073174E-93 
-0.9807852804E+00   0.2897817305E-69 
-0.7071067812E+00   0.1207497965E-91 
 0.1950903220E+00   0.2035037952E-97 
 0.8314696123E+00   0.1521544815E-94 
 0.00000000000E+00   0.00000000000E+00 

We observe that four zeros of polynomial 
of degree 15 are correct to the last decimal place 
and the largest error in the remaining zeros is 
0.3x10 . 69−

 
Polynomial of degree 20 
Real Part  imaginary Part 
 0.7330518718E+00 0.00000000000E+00 
 0.2225209340E+00 0.00000000000E+00 
-0.3653410244E+00 0.2900212312-100 
-0.8262387743E+00 0.00000000000E+00 
-0.9888308262E+00  -0.2197720938E-86 
-0.7330518718E+00 0.00000000000E+00 
-0.2225209340E+00 0.8701176395E-91 
 0.3653410244E+00 0.00000000000E+00 
 0.8262387743E+00 0.3341234145E-82 
 0.9555728058E+00 0.7053365926E-81 
 0.9009688679E+00 0.3306063417E-82 
 0.5000000000E+00 0.00000000000E+00 
-0.7473009359E-01 0.00000000000E+00 
-0.6234898019E+00 0.8820562125E-82 
-0.9555728058E+00 0.1700442537E-80 
-0.9009688679E+00 0.00000000000E+00 

-0.5000000000E+00 0.5131358458E-84 
 0.7473009359E-01   -0.1379593765E-92 
 0.6234898019E+00  -0.1274847264E-82 
 0.9888308262E+00  -0.1483682460E-66 
  We observe that eight zeros of polynomial 
of degree 20 are correct to the last decimal place 
and the largest error in the remaining zeros is 

 0.1x10-
-66

 
8. THE IMPLEMENTATION 
 

 The FORTRAN subroutine given in the 
Appendix is a direct implementation of the 
algorithm given in 3 Double-length real arithmetic 
is used throughout to allow for a termination 
criterion based on the use of Adams type error 
bound given in 5. If required, starting estimates 
are taken in the form  

1(1)n.ki], 0.05 1)/n -(k2exp[ =+π  
Polynomial is scaled using an upper bound on the 
largest zero of (1.1). After the zeros of scaled 
polynomial have been calculated, they are 
transferred back to give zero estimates for original 
polynomial evaluation.  

Several different modes of entry are 
possible. Initial estimates may or may not be 
specified. If they are given as rlz(k) + i cmz (k),k 
=1(1)n, the character parameter ans should be ‘y’ 
or ‘Y’. The logical parameter con should be ‘true’ 
, if up-dating of an estimate is to cease once it has 
been detected as having converged; a value ‘false’ 
means that up-dating will continue until all 
estimates are indicated as having converged on the 
same sweep .  

Chebyshev polynomials of odd degree 
have zero root which cause numerical difficulties. 
Therefore, a logical parameter zflag was 
introduced to separate zero root from the 
polynomial. This parameter is set to ‘false’ if it 
has zero root, i.e. if constant term of the 
polynomial is zero. 

On exit, the coefficients are unaltered . A 
successful conclusion is indicated by icode having 
the value 1, when the computed root estimates are 
available as rlz(k) + i cmz(k) , k=1(1)n. The 
integer array itusd gives the number of iterations 
to convergence for the individual estimates. A 
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value of  -1 for icode  indicates that not all the 
roots have converged within the permitted number 
of iterations ; those that have not converged being 
shown by the corresponding itusd entry 0.  

There are some error exists from the 
subroutine indicated by the parameter iex, which 
normally has value 0. A value of –2 indicates that 
either the leading coefficient in the polynomial is 
0 or the degree is less than 1. A value of-1 
indicates that division by the complex number 0.0 
+ i 0.0 has been attempted within the 
subroutine.There are ten internally used arrays of 
fixed length allowing for the solution of 
polynomials of degrees not greater than 50. 
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APPENDIX 
 
c subroutine miehrl calculates  zero  
c estimates using modified 
c improved Ehrlich method 
  subroutine miehrl(a,n,rlz,cmz,maxit, 
+itusd,icode,iex,ans,con,kind,zflag) 
 
c attempts  to find the  zeros  of a  
c chebyshev polynomial equation 
c a - double precision one-dimensional 
c array of the coefficients  
c rlz,cmz –double precision  array of  
c initial  estimates  of    real  and  
c imaginary   parts    of   zeros  on  
c entry,  computed     estimates   on 
c exit 

c maxit -maximum  number  of  iterations  
c allowed 
c itusd - 1-dimensional  integer    array 
c giving no.of iterations to   convergence 
c for the  individual zero estimates 
c icode - on successful    conclusion has 
c value 1, otherwise -1 
c iex - an integer     indicating  error  
c conditions,-2 if leading coefficient is 
c zero or  n<2, -1 for      overflow etc 
c ans - character,     if 'y' or'Y'  then 
c initial    estimates    are   available  
c otherwise they are  generated internally 
c con       –logical   variable     which 
c determines whether estimates are 
c up-dated  after  convergence  or   not, 
c true means not 
c zflag     -logical  variable     which  
c separates the zero root from the 
c chebyshev polynomial equation 
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c kind-integer,1if chebyshev poly of  
c first kind,2 if of second kind 
  implicit double precision (a-h,o-z) 
  dimension a(n+1),b(51),rdelta(50), 
 
+cdelta(50),rzstar(50),czstar(50),rp(5
+0),cp(50),rlz(n),cmz(n),iflag(50), 
+itusd(n),rpd(51),cpd(51),d(50) 
character ans 
logical con,sat,zflag 
if(.not.(ans.eq.'Y'.or.ans.eq.'y')) 
then call chpol(a,n,kind) 
endif 
 
      if(a(n+1).eq.0.0) then 
    n=n-1 
    zflag = .true. 
      endif 
 
      iex=0 
c if leading coefficient zero or  n<2 
c force c exit 
      if (a(1).eq.0.0.or.n.lt.2) then 
    iex=-2 
    return 
      endif 
c initialize parameters 
      np1=n+1 
      icode=1 
      iroot=0 
      do i=1,n 
     itusd(i)=0 
      enddo 
      k1=1 
      k2=n 
      k3=1 
c copy the coefficients 
      do i=1,np1 
     b(i)=a(i) 
      enddo 
      if (b(1).eq.1.0) goto 1 
c making leading coefficient unity 
      const=1.0/b(1) 
      do i=1,np1 
     b(i)=b(i)*const 
      enddo 
 
  1  if (ans.eq.'Y'.or.ans.eq.'y') 
goto 2 
c  find bound on the largest zero 
      call bnd(b,np1,beta) 
c  scale the polynomial to bring zeros 
in c unit circle 
      call scale(b,np1,beta) 
c generate inital estimates round the 
unit c circle 
      call gstval(n,rlz,cmz) 
c set convergence flags 

  2 do i=1,n 
     iflag(i)=1 
      enddo 
      do l=1,maxit 
 
c calculate poly and deriv values for non-
c converged roots and store 
c in arrays rp,cp rpd and cpd 
      if (.not.con) iroot=0 
      do 20 i=1,n 
 if (con .and. iflag(i).eq.0) goto 20 
   call evaluate(b,n,rlz(i),cmz(i),rp(i), 
  +cp(i),rpd(i),cpd(i),sat) 
     if (sat .and. l.gt.1) then 
    iflag(i)=0 
    iroot=iroot+1 
    itusd(i)=l 
     endif 
     bf=rpd(i)**2+cpd(i)**2 
     if (bf.eq.0.0) goto 12 
rdelta(i)=(-rp(i)*rpd(i)-cp(i)*cpd(i))/bf 
cdelta(i)=(-cp(i)*rpd(i)+rp(i)*cpd(i))/bf 
c calculate zstar and store  inrzstar  c 
and czstar 
     rzstar(i)=rlz(i)+rdelta(i) 
     czstar(i)=cmz(i)+cdelta(i) 
20 continue 
      do 500 k=k1,k2,k3 
if (con .and. iflag(k).eq.0) goto 500 
     sr=0.0 
     sc=0.0 
 do 50 j=1,n 
    if (j.eq.k) goto 50 
    ar=rlz(k)-rzstar(j) 
    ac=cmz(k)-czstar(j) 
    bf=ar**2+ac**2 
    if (bf.eq.0.0) goto 12 
    sr=sr+ar/bf 
    sc=sc-ac/bf 
50  continue 
     ar=rdelta(k) 
     ac=cdelta(k) 
     br=ar*sr-ac*sc+1.0 
     bc=ar*sc+ac*sr 
     bf=br**2+bc**2 
     if (bf.eq.0.0) goto 12 
     rdelta(k)=(ar*br+ac*bc)/bf 
     cdelta(k)=(ac*br-ar*bc)/bf 
     rzstar(k)=rlz(k)+rdelta(k) 
     czstar(k)=cmz(k)+cdelta(k) 
500 continue 
      do i=1,n 
     rlz(i)=rzstar(i) 
     cmz(i)=czstar(i) 
      enddo 
c reverse the order of updating 
      k4=k1 
      k1=k2 
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      k2=k4 
      k3=-k3 
      if (iroot.eq.n) goto 13 
      enddo 
 
      icode=-1 
13 if(.not.(ans.eq.'Y'.or.ans.eq.'y')) 
then 
     do i=1,n 
    rlz(i)=rlz(i)*beta 
    cmz(i)=cmz(i)*beta 
     enddo 
   endif 
      if (zflag) then 
 n = n + 1 
 rlz(n) = 0. 
 cmz(n) = 0. 
 itusd(n)=0 
      endif 
      return 
 
 
c abnormal exit - overflow 
12iex=-3 
      return 
      end 
c subroutine to evaluate poly and 
deriv 
  subroutine 
evaluate(a,n,x,y,rp,cp,rdp, 
+cdp,sat) 
 double precision 
a(n+1),x,y,rp,cp,rdp,cdp 
+,b1,b2,b3,a1,a2,a3,p,q,c,t,tol 
      logical sat 
      integer n,i 
      tol=2.0**(-53) 
      sat=.false. 
      p=-2.0*x 
      q=x*x+y*y 
      t=dsqrt(q) 
      b2=0.0 
      a2=0.0 
      b1=1.0 
      a1=1.0 
      c=0.8 
      do i=1,n-2 
     a3=a2 
     a2=a1 
     a1=a(i+1)-p*a2-q*a3 
     c=t*c+dabs(a1) 
     b3=b2 
     b2=b1 
     b1=a1-p*b2-q*b3 
      enddo 
      a3=a2 
      a2=a1 
      a1=a(n)-p*a2-q*a3 

      rp=a(n+1)+x*a1-q*a2 
      cp=a1*y 
      rdp=a1-2.0*b2*y*y 
      cdp=2.0*y*(b1-x*b2) 
      c=t*(t*c+dabs(a1))+dabs(rp) 
     
sat=dsqrt(rp*rp+cp*cp).lt.(2.0*dabs(x*a1)-
+8.0*(dabs(rp)+dabs(a1)*t)+10.0*c)*tol      
print*,dsqrt(rp*rp+cp*cp),(2.0*dabs(x*a1)-
8.0*(dabs(rp)+dabs(a1)*t)+10.0*c)*tol,sat 
c  pause 
      return 
      end 
 
c subroutine to find bound on largest zero 
      subroutine bnd(b,n,beta) 
      double precision b(n),beta,xm,xm1 
      integer n,i 
 
      xm=abs(b(1)) 
      do i=2,n 
     xm1=abs(b(i))**(1.0/i) 
     xm=dmax1(xm,xm1) 
      enddo 
      beta=2.0*xm 
      return 
      end 
 
c subroutine to bring  zeros   within c 
unit circle 
      subroutine scale(b,n,beta) 
      double precision b(n),beta,t,t1 
      integer n,i 
      t=1.0/beta 
      t1=1.0 
      do i=2,n 
     t1=t1*t 
     b(i)=b(i)*t1 
      enddo 
      return 
      end 
 
c subroutine   to   generate  initial c 
estimates 
      subroutine gstval(n,r,c) 
      double precision r(n),c(n),x,a 
      integer n,i 
      a=4.0*atan(1.0)/n 
      do i=1,n 
     x=2*(i-1)*a+0.05 
     r(i)=cos(x) 
     c(i)=sin(x) 
      enddo 
      return 
      end 
    subroutine chpol(a,n,kind) 
    implicit double precision(a-h,o-z) 
    dimension a(n+1),b(51),c(51),g(3) 
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      a(2)=0 
      b(2)=0 
      a(3)=-1 
      g(1)=2 
      g(2)=0 
      g(3)=-1 
      if(kind.eq.1)then 
 b(1)=1 
 a(1)=2 
 elseif(kind.eq.2)then 
 b(1)=2 
 a(1)=4 
      endif 
      do j=3,n 
 c(1)=g(1)*a(1) 
 c(2)=g(1)*a(2)+g(2)*a(1) 

 k=4 
100  s=0 
 do i=1,2 
   s=s+g(I)*a(K-I) 
 enddo 
  c(k-1)=s+g(3)*b(k-3) 
    k=k+1 
  if(k.lt.(j+2)) goto 100 
   c(k-1)=g(2)*a(k-2)+g(3)*b(k-3) 
 do i=1,n+1 
     b(i)=a(i) 
     a(i)=c(i) 
 enddo 
      enddo 

return 
      end 
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