
 ▼Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan, 2000, Vol. 11, No. 1, pp.18-25 ISSN 1021-1012

SIMULTANEOUS DETERMINATION OF ALL THE ZEROS OF CHEBYSHEV
POLYNOMIAL
Nazir Ahmad Mir*, Zahida Akram
Centre for Advanced Studies in Pure & Applied Mathematics,
Bahauddin Zakariya University, Multan, Pakistan.

Abstract: An algorithm based on modified improved Ehrlich method is developed
which finds simultaneously all the zeros of Chebyshev polynomials of first and second
kind, the Chebyshev polynomials are generated by a three term recurrence relation. The
only information required is degree of the polynomial. The same algorithm works for
finding simultaneously all the zeros of real polynomials requiring information about its
degree and coefficients.

Keywords: Zeros, Polynomials, Generalised Basis, Simultaneous Methods.

1. INTRODUCTION

 An algorithm1,2 was designed for finding
simultaneously all the zeros of a real as well as
complex polynomials, expressed in monomial
basis. The two algorithms required information
only about degree and coefficients of the
polynomial. Six methods belonging to the Durand-
Kerner and Ehrlich families3,4,5,6,7 were compared
numerically in the above mentioned papers. It was
found that the modified improved Ehrlich method
was the best amongst the six methods considered.
Here an algorithm based on modified improved
Ehrlich method is developed for finding
simultaneously all the zeros of Chebyshev
polynomials of first and second kind, the only
requirement being that the Chebyshev polynomial
should be generated by a three term recurrence
relation8 which is described in Section 2.

The generalised Chebyshev polynomial of
degree n would be a real polynomial of the form

aza...zaza)z(p n1-n

1-n

1

n

0n
++++= (1.1)

, where a are real. The implemented
algorithm also works for finding simultaneously
all the zeros of a real polynomial, and has already
been tested on over 250 polynomials of varying
degrees

,0,1,...ni
i
, =

1 . The modified improved Ehrlich method
is given in an algorithm form in Section 3. In

Section 4, a way of generating initial estimates is
described where as termination criterion and
polynomial evaluation is discussed in Sections 5
and 6 respectively.

Section 7 contains some discussion on the
results of Chebyshev polynomials of first and
second kind of varying degrees. Section 8 contains
a description of the form of the implemented
algorithm, which is given as a FORTRAN
procedure in the appendix.

2. THE BASIS POLNOMIAL

 The basis polynomial8 considered will
form polynomials { , where }(z)

rφ

(z)
rφ is of exact degree r in , The

family will be generated by
z ...0,1,2,r =

,,
0,101-

(z)0(z) g== φφ

(z)g(z))gg(z(z)
1-k1k3,k1k2,1k1,1k φφφ ++++

++=

(2.1)
 .0g, 1k1,

0k ≠
+

≥

Then form a linearly
independent set and hence provides a basis for the
representation of any polynomial of degree n.
Many basis can be generated in this way, but we
consider here the following two basis:

,(z)}{ n0,1,...,r
r

, =φ

 *Author to receive correspondence ▼J.res., Sci., 2000, 11(1), 18-25.
18

19 Nazir Ahmad Mir, Zahida Akram

(i) The Chebyshev polynomials of the first
kind

 ,(z)T(z) rr

=φ

 ,1g

,0g,2g,0g,1g,0g

k3,

k2,k1,2,11,11,0

−=

=====

, 2k ≥

(ii) The Chebyshev polynomials of the
second kind

 ,(z)U(z) rr

=φ
 1k

k3,k2,k1,1,0
,1g,0g,2g,1g ≥−====

These two bases are the examples of
orthogonal basis and, of course any orthogonal
basis is generated three-term recurrence of the
form (2.1). The intervals of orthogonality of the
two bases are [-1,1]. These two bases will be
covered in the implementation of the algorithm
considered.

3. ALGORITHM FOR MODIFIED
 IMPROVED EHRLICH METHOD

We give the algorithm for updating a set of
zero estimates to obtain improved
estimates . Within the algorithm, the
polynomial is denoted by and its derivative
by .

z,...,z,z n21

z~,..., nz~,z~ 21

p(z)
(z)p′

We assume some initial ordering of the
indices, say (1,2…n) and each stage of algorithm
is extended for i running through these values.
(i) /)z (p i−=∆i)z(p' i

(ii) zzz iii ∆+=∗

(iii)











∑ ∗−

∆+∆=
≠=

n

ik1,k
i

iii
zz

11/z
k

∆

 with






∆+

∆+
=∗

>

<

ikkk

ikkk
k ,zz

,zz
z

(iv) zzz~ iii ∆+=
(v) The ordering of the indices is reversed

 before the next iteration and this alternation
 continues until convergence.

4. GENERATION OF INITIAL ESTIMATES

 Consider the polynomial (1.1)
having zeros . Henrici z,...,z,z n21

9, states that
these roots all lie inside a circle of radius Beta

 aamax2 0k

1/k

nk1
/

≤≤
 (4.1)

where Beta is a bound on the largest zero of a
polynomial (1.1). It is a well known result10 that
if has a zero inside the circle p(z) ρ≤z

z)p(ρ has a zero inside the unit circle.This result is
true for both real and complex polynomial
The polynomial (1.1) was therefore, scaled
using the bound (4.1) to bring all of its zeros
into the unit circle. The arbitrary initial
estimates for the zeros of the polynomial (1.1)
were taken to be the points uniformly spaced
round the unit circle having the centre at
the origin, that is , the
points exp[i]1)/n -(k2π in the complex plane.
0.05 was added to the exponent argument to
avoid symmetric distributions which may cause
numerical difficulties.

5. CONVERGENCE CRITERION

 This is provided by computing a Bound
on the accumulated round off error in the
computed value of the polynomial.When this
indicates that the later value can be fully
accounted for by rounding error, the iterative
process is terminated, as there may be no useful
information available from which to determine
an improved estimate. Bounds of this type have
been given by Adams11, Peters and Wilkinson12
and Grant and Hitchins 13. In practice , they
have been found to be extremely reliable and
accurate, particularly, if one or two extra
iterations are performed to allow for the
conservative nature of the bound. Their major
disadvantage is the cost of evaluating them.

 SIMULTANEOUS DETERMINATION OF ALL THE ZEROS OF CHEBYSHEV POLYNOMIAL 20

6. POLNOMIAL EVALUATION

As ultimately, we are getting polynomials with
real coefficients only, they and their derivatives
can be evaluated at βα i + by executing the
algorithm

 p ,22q , -2 βαα +==

 ,bpab,b 01100 −== a
 c ,cpbc,b 01100 −==

 ,bqbpab 1-2(1)nk2-k1-kkk , =−−=

 3,-2(1)nk2-k1-kkk ,cqcpbc =−−=

 b bqba 2-n1-nnn −+=

 cqbc 4-n2-n2-n −=

when b ib) i(p 1-nnn
ββα +=+

and
).cc (2 i

)bc
2 (-2) i (p

2-n3-n

1-n3-nn

++

+=+′

αβ

ββα

Following Adams2, a bound on the error can be
found using

 ,b8.0e 00 = ,beqe 1(1)nkk1-kk , =+=

when the process is terminated if

ρ

αβα

)e10

)bqb(8b(2)i(p

n

1-nn1-nn

+

+−≤+

which is a machine constant, the smallest number
which when added to one produces a change. In
the numerical result ρ was taken to be .2

-53

7. NUMERICAL RESULTS

The zeros of Chebyshev polynomials of first
and second kind are real and always lie in[-1,1]. A
discussion on some estimated zeros of Chebyshev
polynomials of first and second kind of varying
degrees using the implemented algorithm is given
below:

7.1 Estimated Zeros of Chebyshev
 Polynomials of First Kind

Polynomial of degree 15
Real Part imaginary Part
 0.7431448255E+00 -0.9358454147-113
-0.2079116908E+00 0.0000000000E+00
-0.8660254038E+00 0.1029511518E-83
-0.9510565163E+00 -0.1034073842-105
-0.4067366431E+00 -0.9936008577-112
 0.5877852523e+00 0.1005382342E-86
 0.9945218954E+00 -0.2010356545-110
 0.9510565163E+00 0.0000000000E+00
 0.4067366431E+00 -0.4735102032E-91
-0.5877852523E+00 -0.1066044944E-91
-0.9945218954E+00 -0.4272697189E-91
-0.7431448285E+00 -0.6380428220E-89
 0.2079116908E+00 -0.1123622325E-93
 0.8660454038E+00 0.0000000000E+00
 0.0000000000E+00 0.0000000000E+00

Here, four zeros of polynomial are correct
to the last decimal place and the largest error in
the remaining zeros is 0.1x10 . 83−

Polynomial of Degree 20
Real Part Imaginary Part
 0.760405965E+00 -0.2081566379E-70
 0.2334453639E+00 -0.4766448662E-87
-0.3826834324E+00 -0.5253732430E-84
-0.8526401644E+00 -0.1743652001E-79
-0.9969173337E+00 0.3111507639E-60
-0.7604059656E+00 -0.1602604814E-70
-0.2334453639E+00 -0.8433758355E-80
 0.3826834324E+00 -0.4138123923E-85
 0.8526401644E+00 -0.8542112537E-77
 0.9723699204E+00 0.0000000000E+00
 0.9238795325E+00 0.0000000000E+00
 0.5224985647E+00 -0.2027144756E-75
-0.7845909573E-01 0.0000000000E+00
-0.6494480483E+00 0.0000000000E+00
-0.9723699204E+00 0.0000000000E+00
-0.9238795325E+00 -0.1982483825E-74
-0.5224985647E+00 0.0000000000E+00
 0.7845909573E-01 0.0000000000E+00
 0.6494480483E+00 -0.1244603056E-59
 0.9969173337E+00 0.3262652234E-54

21 Nazir Ahmad Mir, Zahida Akram

We observe that seven zeros of polynomial
of degree 20 are correct to the last decimal place
and the largest error in the remaining zeros is
0.3x10 . 54−

7.2 Estimated Zeros of Chebyshev
 Polynomials of Second Kind

Polynomial of degree 15
Real Part imaginary Part
 0.7071067812E+00 -0.9762249700E-99
-0.1950903220E+00 0.00000000000E+00
-0.8314696123E+00 0.1256727927E-87
-0.9238795325E+00 -0.4299069269E-93
-0.3826834324E+00 -0.1513758426-102
 0.5555702330E+00 -0.9882804745E-99
 0.9807852804E+00 -0.1563865384E-97
 0.9238795325E+00 0.0000000000E+00
 0.3826834324E+00 0.00000000000E+00
-0.5555702330E+00 0.9588073174E-93
-0.9807852804E+00 0.2897817305E-69
-0.7071067812E+00 0.1207497965E-91
 0.1950903220E+00 0.2035037952E-97
 0.8314696123E+00 0.1521544815E-94
 0.00000000000E+00 0.00000000000E+00

We observe that four zeros of polynomial
of degree 15 are correct to the last decimal place
and the largest error in the remaining zeros is
0.3x10 . 69−

Polynomial of degree 20
Real Part imaginary Part
 0.7330518718E+00 0.00000000000E+00
 0.2225209340E+00 0.00000000000E+00
-0.3653410244E+00 0.2900212312-100
-0.8262387743E+00 0.00000000000E+00
-0.9888308262E+00 -0.2197720938E-86
-0.7330518718E+00 0.00000000000E+00
-0.2225209340E+00 0.8701176395E-91
 0.3653410244E+00 0.00000000000E+00
 0.8262387743E+00 0.3341234145E-82
 0.9555728058E+00 0.7053365926E-81
 0.9009688679E+00 0.3306063417E-82
 0.5000000000E+00 0.00000000000E+00
-0.7473009359E-01 0.00000000000E+00
-0.6234898019E+00 0.8820562125E-82
-0.9555728058E+00 0.1700442537E-80
-0.9009688679E+00 0.00000000000E+00

-0.5000000000E+00 0.5131358458E-84
 0.7473009359E-01 -0.1379593765E-92
 0.6234898019E+00 -0.1274847264E-82
 0.9888308262E+00 -0.1483682460E-66
 We observe that eight zeros of polynomial
of degree 20 are correct to the last decimal place
and the largest error in the remaining zeros is

 0.1x10-
-66

8. THE IMPLEMENTATION

 The FORTRAN subroutine given in the
Appendix is a direct implementation of the
algorithm given in 3 Double-length real arithmetic
is used throughout to allow for a termination
criterion based on the use of Adams type error
bound given in 5. If required, starting estimates
are taken in the form

1(1)n.ki], 0.05 1)/n -(k2exp[=+π
Polynomial is scaled using an upper bound on the
largest zero of (1.1). After the zeros of scaled
polynomial have been calculated, they are
transferred back to give zero estimates for original
polynomial evaluation.

Several different modes of entry are
possible. Initial estimates may or may not be
specified. If they are given as rlz(k) + i cmz (k),k
=1(1)n, the character parameter ans should be ‘y’
or ‘Y’. The logical parameter con should be ‘true’
, if up-dating of an estimate is to cease once it has
been detected as having converged; a value ‘false’
means that up-dating will continue until all
estimates are indicated as having converged on the
same sweep .

Chebyshev polynomials of odd degree
have zero root which cause numerical difficulties.
Therefore, a logical parameter zflag was
introduced to separate zero root from the
polynomial. This parameter is set to ‘false’ if it
has zero root, i.e. if constant term of the
polynomial is zero.

On exit, the coefficients are unaltered . A
successful conclusion is indicated by icode having
the value 1, when the computed root estimates are
available as rlz(k) + i cmz(k) , k=1(1)n. The
integer array itusd gives the number of iterations
to convergence for the individual estimates. A

 SIMULTANEOUS DETERMINATION OF ALL THE ZEROS OF CHEBYSHEV POLYNOMIAL 22

value of -1 for icode indicates that not all the
roots have converged within the permitted number
of iterations ; those that have not converged being
shown by the corresponding itusd entry 0.

There are some error exists from the
subroutine indicated by the parameter iex, which
normally has value 0. A value of –2 indicates that
either the leading coefficient in the polynomial is
0 or the degree is less than 1. A value of-1
indicates that division by the complex number 0.0
+ i 0.0 has been attempted within the
subroutine.There are ten internally used arrays of
fixed length allowing for the solution of
polynomials of degrees not greater than 50.

REFERENCES

1. O. Aberth, “Iteration methods for finding all

the zeros of a polynomial simultaneously”,
Math. Comp. , 1973, 27,339-344.

2. D. A. Adams, “A stopping criterion for
polynomial root finding”, Comm. ACM, 1967,
10, 655-658.

3. E. Durand, “Solutions Numeriques des
Equations Algebriques”, Tome I, Masson,
Paris,1960.

4. L.W. Ehrilich,”A modified Newton method for
Polynomials”, Comm., ACM, 1967,10, 107-
108.

5. J. A. Grant and N. A. Mir, “A numerical
comparison of methods for finding
simultaneously all the zeros of a real

polynomial”, Report No. 93-36, University of
Bradford, U.K., 1993.

6. J.A. Grant and A.A. Rahman, “Determination
of the zeros of a linear combination of
generalised polynomials”, Journal of
Computational and Applied Mathematics,
1992, 42, 269-278.

7. J. A. Grant, and G. D. Hitchins,” Two
algorithms for the solution of polynomial
equations to limiting machine precision”,
Comp. J., 1975, 18, 258-264.

8. P. Henrici, and B.O. Watkins,” Finding zeros
of a polynomial by the Q-D algorithm”,
Comm. ACM, 1965,8, 570-574.

9. I. O. Kerner, I. O “Ein Gesamschrittverfahren
zur Berechnung der Nullstellen eines
Polynoms”, Num.Math., 1966, 8, 290-294.

10. N.A. Mir and Faisal Ali, “A comparison of
methods for finding simultaneously all the
zeros of a complex polynomial”, Sci. Int.,

 (accepted)
11. A. W. M Nourein,., “An improvement on two

iteration methods for simultaneous
determination of the zeros of a polynomial”,
Intern. J. Computer Math., 1977, 6, 241-252.

12. G. Peters, and J. H. Wilkinson, “Practical
problems arising in the solution of polynomial
equations”, J. Inst.Math Appl., 1971, 6, 16-35.

13. A. Ralston, “A first course in numerical
analysis”, McGraw Hill ,1965.

APPENDIX

c subroutine miehrl calculates zero
c estimates using modified
c improved Ehrlich method
 subroutine miehrl(a,n,rlz,cmz,maxit,
+itusd,icode,iex,ans,con,kind,zflag)

c attempts to find the zeros of a
c chebyshev polynomial equation
c a - double precision one-dimensional
c array of the coefficients
c rlz,cmz –double precision array of
c initial estimates of real and
c imaginary parts of zeros on
c entry, computed estimates on
c exit

c maxit -maximum number of iterations
c allowed
c itusd - 1-dimensional integer array
c giving no.of iterations to convergence
c for the individual zero estimates
c icode - on successful conclusion has
c value 1, otherwise -1
c iex - an integer indicating error
c conditions,-2 if leading coefficient is
c zero or n<2, -1 for overflow etc
c ans - character, if 'y' or'Y' then
c initial estimates are available
c otherwise they are generated internally
c con –logical variable which
c determines whether estimates are
c up-dated after convergence or not,
c true means not
c zflag -logical variable which
c separates the zero root from the
c chebyshev polynomial equation

23 Nazir Ahmad Mir, Zahida Akram

c kind-integer,1if chebyshev poly of
c first kind,2 if of second kind
 implicit double precision (a-h,o-z)
 dimension a(n+1),b(51),rdelta(50),

+cdelta(50),rzstar(50),czstar(50),rp(5
+0),cp(50),rlz(n),cmz(n),iflag(50),
+itusd(n),rpd(51),cpd(51),d(50)
character ans
logical con,sat,zflag
if(.not.(ans.eq.'Y'.or.ans.eq.'y'))
then call chpol(a,n,kind)
endif

 if(a(n+1).eq.0.0) then
 n=n-1
 zflag = .true.
 endif

 iex=0
c if leading coefficient zero or n<2
c force c exit
 if (a(1).eq.0.0.or.n.lt.2) then
 iex=-2
 return
 endif
c initialize parameters
 np1=n+1
 icode=1
 iroot=0
 do i=1,n
 itusd(i)=0
 enddo
 k1=1
 k2=n
 k3=1
c copy the coefficients
 do i=1,np1
 b(i)=a(i)
 enddo
 if (b(1).eq.1.0) goto 1
c making leading coefficient unity
 const=1.0/b(1)
 do i=1,np1
 b(i)=b(i)*const
 enddo

 1 if (ans.eq.'Y'.or.ans.eq.'y')
goto 2
c find bound on the largest zero
 call bnd(b,np1,beta)
c scale the polynomial to bring zeros
in c unit circle
 call scale(b,np1,beta)
c generate inital estimates round the
unit c circle
 call gstval(n,rlz,cmz)
c set convergence flags

 2 do i=1,n
 iflag(i)=1
 enddo
 do l=1,maxit

c calculate poly and deriv values for non-
c converged roots and store
c in arrays rp,cp rpd and cpd
 if (.not.con) iroot=0
 do 20 i=1,n
 if (con .and. iflag(i).eq.0) goto 20
 call evaluate(b,n,rlz(i),cmz(i),rp(i),
 +cp(i),rpd(i),cpd(i),sat)
 if (sat .and. l.gt.1) then
 iflag(i)=0
 iroot=iroot+1
 itusd(i)=l
 endif
 bf=rpd(i)**2+cpd(i)**2
 if (bf.eq.0.0) goto 12
rdelta(i)=(-rp(i)*rpd(i)-cp(i)*cpd(i))/bf
cdelta(i)=(-cp(i)*rpd(i)+rp(i)*cpd(i))/bf
c calculate zstar and store inrzstar c
and czstar
 rzstar(i)=rlz(i)+rdelta(i)
 czstar(i)=cmz(i)+cdelta(i)
20 continue
 do 500 k=k1,k2,k3
if (con .and. iflag(k).eq.0) goto 500
 sr=0.0
 sc=0.0
 do 50 j=1,n
 if (j.eq.k) goto 50
 ar=rlz(k)-rzstar(j)
 ac=cmz(k)-czstar(j)
 bf=ar**2+ac**2
 if (bf.eq.0.0) goto 12
 sr=sr+ar/bf
 sc=sc-ac/bf
50 continue
 ar=rdelta(k)
 ac=cdelta(k)
 br=ar*sr-ac*sc+1.0
 bc=ar*sc+ac*sr
 bf=br**2+bc**2
 if (bf.eq.0.0) goto 12
 rdelta(k)=(ar*br+ac*bc)/bf
 cdelta(k)=(ac*br-ar*bc)/bf
 rzstar(k)=rlz(k)+rdelta(k)
 czstar(k)=cmz(k)+cdelta(k)
500 continue
 do i=1,n
 rlz(i)=rzstar(i)
 cmz(i)=czstar(i)
 enddo
c reverse the order of updating
 k4=k1
 k1=k2

 SIMULTANEOUS DETERMINATION OF ALL THE ZEROS OF CHEBYSHEV POLYNOMIAL 24

 k2=k4
 k3=-k3
 if (iroot.eq.n) goto 13
 enddo

 icode=-1
13 if(.not.(ans.eq.'Y'.or.ans.eq.'y'))
then
 do i=1,n
 rlz(i)=rlz(i)*beta
 cmz(i)=cmz(i)*beta
 enddo
 endif
 if (zflag) then
 n = n + 1
 rlz(n) = 0.
 cmz(n) = 0.
 itusd(n)=0
 endif
 return

c abnormal exit - overflow
12iex=-3
 return
 end
c subroutine to evaluate poly and
deriv
 subroutine
evaluate(a,n,x,y,rp,cp,rdp,
+cdp,sat)
 double precision
a(n+1),x,y,rp,cp,rdp,cdp
+,b1,b2,b3,a1,a2,a3,p,q,c,t,tol
 logical sat
 integer n,i
 tol=2.0**(-53)
 sat=.false.
 p=-2.0*x
 q=x*x+y*y
 t=dsqrt(q)
 b2=0.0
 a2=0.0
 b1=1.0
 a1=1.0
 c=0.8
 do i=1,n-2
 a3=a2
 a2=a1
 a1=a(i+1)-p*a2-q*a3
 c=t*c+dabs(a1)
 b3=b2
 b2=b1
 b1=a1-p*b2-q*b3
 enddo
 a3=a2
 a2=a1
 a1=a(n)-p*a2-q*a3

 rp=a(n+1)+x*a1-q*a2
 cp=a1*y
 rdp=a1-2.0*b2*y*y
 cdp=2.0*y*(b1-x*b2)
 c=t*(t*c+dabs(a1))+dabs(rp)

sat=dsqrt(rp*rp+cp*cp).lt.(2.0*dabs(x*a1)-
+8.0*(dabs(rp)+dabs(a1)*t)+10.0*c)*tol
print*,dsqrt(rp*rp+cp*cp),(2.0*dabs(x*a1)-
8.0*(dabs(rp)+dabs(a1)*t)+10.0*c)*tol,sat
c pause
 return
 end

c subroutine to find bound on largest zero
 subroutine bnd(b,n,beta)
 double precision b(n),beta,xm,xm1
 integer n,i

 xm=abs(b(1))
 do i=2,n
 xm1=abs(b(i))**(1.0/i)
 xm=dmax1(xm,xm1)
 enddo
 beta=2.0*xm
 return
 end

c subroutine to bring zeros within c
unit circle
 subroutine scale(b,n,beta)
 double precision b(n),beta,t,t1
 integer n,i
 t=1.0/beta
 t1=1.0
 do i=2,n
 t1=t1*t
 b(i)=b(i)*t1
 enddo
 return
 end

c subroutine to generate initial c
estimates
 subroutine gstval(n,r,c)
 double precision r(n),c(n),x,a
 integer n,i
 a=4.0*atan(1.0)/n
 do i=1,n
 x=2*(i-1)*a+0.05
 r(i)=cos(x)
 c(i)=sin(x)
 enddo
 return
 end
 subroutine chpol(a,n,kind)
 implicit double precision(a-h,o-z)
 dimension a(n+1),b(51),c(51),g(3)

25 Nazir Ahmad Mir, Zahida Akram

 a(2)=0
 b(2)=0
 a(3)=-1
 g(1)=2
 g(2)=0
 g(3)=-1
 if(kind.eq.1)then
 b(1)=1
 a(1)=2
 elseif(kind.eq.2)then
 b(1)=2
 a(1)=4
 endif
 do j=3,n
 c(1)=g(1)*a(1)
 c(2)=g(1)*a(2)+g(2)*a(1)

 k=4
100 s=0
 do i=1,2
 s=s+g(I)*a(K-I)
 enddo
 c(k-1)=s+g(3)*b(k-3)
 k=k+1
 if(k.lt.(j+2)) goto 100
 c(k-1)=g(2)*a(k-2)+g(3)*b(k-3)
 do i=1,n+1
 b(i)=a(i)
 a(i)=c(i)
 enddo
 enddo

return
 end

	SIMULTANEOUS DETERMINATION OF ALL THE ZEROS OF CHEBYSHEV POLYNOMIAL
	The generalised Chebyshev polynomial of degree n would be a real polynomial of the form
	
	REFERENCES
	APPENDIX

