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Abstract: Numerical simulation of the steady, laminar, forced convection heat 
transfer in the finned annulus is carried out for the case of fully developed 
incompressible flow corresponding to thermal boundary condition of uniform heat 
input per unit axial length with peripherally uniform temperature at any cross 
section. Boundary fitted curvilinear coordinates are used to overcome the 
singularities, being presented by the fin tip, in the solution domain. Various heat 
transfer and fluid flow characteristics are investigated for a range of values of the 
ratio of radii of inner and outer pipes, fin height and number of fins. The results 
calculated are in good comparison with the literature results with considerable 
gain in the computational time. 
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INTRODUCTION 

Development of high performance thermal systems have enthused 
interest in methods to enhance heat transfer. Thus heat transfer from 
rough surfaces has received a great deal of attention due to many 
practical applications for increasing the effectiveness of heat transfer. 
Laminar flow heat transfer occurs in a variety of engineering problems 
and is of particular importance where viscous fluids are heated or cooled. 
Since the heat transfer in these types of fluids is generally low, there is a 
need for augmentation.  Much work has been carried out for the internally 
finned circular ducts [Nandakumar and Masliyah 1975, Masliyah and 
Nandakumar 1976, Soliman and Feingold 1977, Soliman et al. 1980]. 
However, finned double pipe geometry needs to be extensively studied 
for fluid flow and heat transfer characteristics. Agrawal and Sengupta 
[1990] considered the heat transfer enhancement by external circular fins. 
Syed [1997] has investigated the heat transfer enhancement in the 
double pipe geometry with longitudinal fins attached on the outer surface 
of the inner pipe. In this geometry, fin tip presents a singularity particularly 
when considerable fin thickness is taken. Therefore there is a need of 
very fine grid near the fin tip. Syed solved momentum and energy 
equations on four different grid levels starting from the coarsest grid of 
20x10 points in ( )θ,r  system to the finest one of 160x80 points.  This 
type of refinement leads to extra computational work and is considerable 
burden on the computer memory resources. In the present work, we have 
generated a body fitted numerical grid to resolve the re-entrant corner 
with the help of elliptic generation system. Although with the introduction 
of boundary conforming curvilinear coordinates the transformed partial 
differential equations become more complicated in the sense of having 
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more terms and cross derivatives but the domain on the other hand is 
greatly simplified since it is transformed to a fixed rectangular region 
regardless of its shape. It is shown here that with the help of body fitted 
grid the same accuracy in results can be achieved by solving the problem 
on one grid level. A comprehensive comparison of results is also carried 
out with those of Syed [1997].   
 

PROBLEM STATEMENT 
The system considered here is that of finned double pipe heat exchanger 
comprising two concentric pipes with tapered longitudinal fins distributed 
around the outer periphery of the inner pipe. Solution has been obtained 
for different geometrical parameters, which are fin height, annular gap, fin 
thickness and number of fins under the assumption of axially uniform heat 
flux.  

 
Fig. 1:  Cross section of the domain. 
 
The flow is assumed to be laminar, steady, and fully developed with 
viscous dissipation neglected. The fluid is considered to be Newtonian 
and incompressible with constant properties. All body forces are 
neglected. The fins are assumed to be smooth and equally spaced and 
have infinite conductivity, i.e. the fins are 100% efficient. An adiabatic 
thermal condition is imposed at the outer pipe. Axial conduction is 
neglected in fluid that is a fair assumption in our case as reported by 
Shah and London [1978]. A cross section of the geometry under 
consideration is as shown in Fig. 1. Let the outer radius of the inner pipe 
be denoted by ir  and inner radius of the outer pipe be denoted by or . The 
geometrical symmetry requires the problem to be solved in the region 
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where φθ ≤≤≤≤ 0  and  i orrr . The dimensionless numerical domain is 
shown in the Fig. 2. 
 

Fig. 2: Computational Domain. 

GRID GENERATION 
Due to the complexity of the annular domain and because of the re-
entrant corner formed by the fin tip, a numerically generated body fitted 
coordinate system is applied to resolve the difficulties in discretizing the 
computational domain. The method used is suggested in [Thompson et 
al. 1984, 1999, Liseikin 1999]. Therefore, the domain transformation 
between the physical coordinates ( ),r θ  and the boundary fitted 

coordinates ( )ηξ ,  is achieved by solving two coupled equations on the 
physical domain. 
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1122 gg    ,  are the metric components of the metric tensor and g is the 
square of the jacobian of transformation.  In the computational domain the 
grid generation Eq. (1) will become 
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Eqs. (2) are discretized using central differences. The resulting equations 
are solved using Successive Over Relaxation method (SOR) subject to 
the boundary conditions provided by the boundary point distribution, with 
automatic adjustment of the relaxation parameter ω as given by Syed et 
al. [1997].  The control functions P and Q are adjusted in such a manner 
that we get concentrated grid on and around the fin tip. The Jacobian of 
the transformation is given by   

( )ξηηξ yxyxg −=  
The transformation relations are given by Thompson et al. [1984] for 
conversion from Cartesian to Curvilinear coordinates. Following the 
footsteps, relations have been established for the conversion from polar 
to curvilinear coordinates. For convenience expressions for the first and 
second derivatives are given below: 
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The numerical grid generated in the physical domain is shown in Fig. 3. 
The concentration of grid lines is quite visible near the fin tip. 
 

 
Fig. 3: Grid drawn in the computational domain.  
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MOMENTUM EQUATION 
Under the assumptions cited earlier, the momentum equation can be 
written as 
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where u′  is the axial velocity component, p is pressure and z is the axial 
distance. Viscous nature of the fluid and symmetry of the numerical 
domain dictates the following boundary conditions: 
(a) No slip conditions at the solid boundaries 

I) φθβ ≤≤==′   ,  at  0 irru        II)  βθ =≤≤=′  , at  0 1rrru i  
III)  φθ ≤≤==′ 0  ,rr at u o0         IV) βθ ≤≤==′ 0  ,rr at u 10  
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where mR  is the dimensionless point of maximum velocity and is given by 
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In dimensionless form, the Eq. (3) becomes 
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Dimensionless boundary conditions are: 
(a) No slip conditions at the solid boundaries  
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Using the transformations established earlier, momentum equation and 
boundary conditions are transformed into the computational domain. The 
resulting equation after little manipulation will take the form 

                           4
54321 cuuuuu −=++−+ ηξξηηηξξ ααααα  (7) 
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The boundary conditions are as under: 
(a) No slip conditions at the solid boundaries  
 ηηξ ju ≤≤== 0  ,  0at  0  , ηξ ηξ j    ,i at u ≤≤== 00
 βηξ jiu tip ≤≤== 0 , at  0 , tipiju ≤≤== ξη β 0 , at  0  
(b) Symmetry conditions 
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where tipi is the number of grid points in ξ  direction till fin tip, ξi is the 

total number of grid points in ξ  direction, ηβ jj  and  are the grid points on 
the fin tip and total number of grid points in η  direction.    
 

ENERGY EQUATION 
The energy equation under the assumption of constant heat flux can be 
written as 
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where α  is the thermal diffusivity and T is the temperature. The boundary 
conditions are 
(a) At the solid boundaries 

II) φθβ ≤≤==     ,rr at TT iw        II)  βθ =≤≤=   ,rrr  at   TT iw 1  
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By doing the same treatment as given by Syed [1997] and using the 
dimensionless temperature 
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kQ
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.

w−
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where Tw is the wall temperature, 
.

Q  is the heat transfer rate per unit axial 
length of the pipe and k is the thermal conductivity of the fluid,  we get the 
dimensionless energy equation 
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u  is the mean velocity.  
With the dimensionless boundary conditions  
(a)  At the solid boundaries  
 φθβτ ≤≤==   ,  ˆat  0 RR  ,     βθτ =≤≤=  , ˆat  0 1RRR  
 βθτ ≤≤== 0 , Rat  0 1R  
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In the computational domain Eq. (8) can be written as:   
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The coefficients 54321 &,,, ααααα  of the above equation are same as 
defined in Eq. (7) and A is the area of the cross section. The transformed 
boundary conditions are: 
(a) At the solid boundaries  
 ηηξτ j    , at ≤≤== 000  , ηξ ηξτ j    ,i at ≤≤== 00
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ξη
ξ

η

ξ
ξ

η

ξη
ξ
τ

η
τ

ξη
ξ
τ

η
τ

i   ,j at    
R
R

ii    ,0 at  
R
R

tip

≤≤=
∂
∂

=
∂
∂

≤≤=
∂
∂

=
∂
∂

0
 



 
 
 
 
 

 
 

N. A. Mir, K. S. Syed and Mazhar Iqbal 260 

SOLUTION PROCEDURE 
Momentum and energy equations are discretized using central 
differences. One-sided three point and four point difference forms are 
used for the first and second derivatives on the boundaries. The step size 
in the computational domain is designed as 1 , 1 =∆=∆ ηξ . The resulting 
system of linear algebraic equations is solved using SOR method with the 
optimum relaxation parameter adjusted as mentioned earlier. Solution 
was computed for number of extreme geometries using different mesh 
sizes and based on these results it was decided to use a grid of 40x20 in 
the computational domain for all geometries as a reasonable compromise 
between accuracy and computer time.  
 

RESULTS AND DISCUSSION 
The range of parameters considered are, ratio of radii 0.5, half fin 
angle β =5o , annulus to fin height ratio H ∗ =0.2,0.4,0.6,0.8,1.0 and 
number  of fins N=6,12,18,24,30. The values H ∗  correspond to 20,40,60 
and 100% of the annulus respectively. The expressions for the bulk mean 
velocity u and bulk mean temperature bτ  are given as  
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The product of local friction factor and Reynolds number ( Ref ) and 
Nusselt number Nu in dimensionless from are given as: 
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where Dh is the hydraulic diameter defined as 

  
Perimeter Wetted

Section Cross of Area4×=hD   

and hP  is the heated perimeter. 
To validate the model, results were obtained for the limiting case of zero 
fin height so that the comparison can be carried out with the known 
results of the double pipe geometry. Table 1 shows a comparison of the 
computed results carried out by us with those of Kakac et al. [1987]. For 
the sake of comparison results are calculated for geometries of ratios of 
radii 0.05,0.1,0.25 and 0.5 in this limiting case only. The results obtained 
are in excellent agreement.  
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Table 1: Comparison of the limiting case results. 

Ref  Nu  R̂  
Computed Literature Computed Literature 

0.05 21.5931 21.5675 17.7858 17.8113 
0.10 22.3510 22.3429 11.8943 11.9058 
0.25 23.3017 23.3018 07.7670 7.75347 
0.50 23.8143 23.8125 06.1917 06.1810 

 
The results of Ref  and Nu  normalized by those of finless double pipe 
results are drawn in Figs. 4 and 5.  The solid line shows the results of 
Syed [1997]. Again the results are comparable.   
 
 

 
Fig. 4: Comparison of Ref  results. 
 
 

 
Fig. 5: Comparison of Nu . 
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CONCLUSION 
The solution of coupled heat transfer equations generally requires a large 
amount of computational work both with the analytical and numerical 
methods. A study is carried out to reduce the amount of computational 
work and at the same time acquire the required order of accuracy. Body 
fitted grid is generated for this purpose and it is shown that the results 
obtained by solving the momentum and energy equations are in 
conformity with the existing results. 
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