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Abstract 
In this paper, we employ the generalized prolate spheroidal wave 
function, generalized hypergeometric function, general class of 
polynomials and the I-function in obtaining the formal solution of a 
partial differential equation related to a problem of heat conduction in 
an anisotropic material. This type of problem occurs mainly in wood 
technology, soil mechanics and the mechanics of solids of fibrous 
structure. At the end, we give an application of our main finding by 
inner-connecting them with the Riemann- Liouville type of functional 
integral operator. The results of this paper unify and extend a large 
number of results established by various earlier workers. 
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INTRODUCTION 
One of the solutions of the differential equation 
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is the generalized prolate spheroidal wave function [Gupta et al. 1985, p. 107, 
Eq. (2.11)] which denotes as  
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Where  is the well known Jacobi polynomials and the coefficients  
satisfy the following relation: 
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where are independent of s, and  is defined to be zero if sa j
' ),,( nA p

j βα

pj 2>  or j<-1 or j=0 and . Besides this we have  0≠p
 1),,(,0,0),,( 0 =≠= nAmnAm βαβα ,  
when s 0 the solution of (1.1) is the Jacobi polynomials of order n. For more 
details see Gupta et al. [1985]. 

→

As examples of the application of the generalized hypergeometric function, a 
general class of polynomials and the I-function, we consider the problem of 
obtaining solution of a problem of heat conduction.  
Consider the partial differential equation related to a problem of heat conduction 
in an anisotropic material, which has been obtained by Saxena and Nageria 
[1974] given below: 
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With the law of conductivity , Q(x) is the intensity of a continuous 
source of heat situated inside the solid . Let the initial temperature of the solid to 
be given by  
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     u(x,0) = F(x)                                                                                           (1.6) 
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solution of (1.5) assume the from 
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In this paper, we shall assume that 
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The general class of polynomials defined by Sarivastava [1972] is represented in 
the following manner: 
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where m is an arbitrary positive integer and the coefficients   are 
arbitrary constants, real or complex. 
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The I-function will be defined and represented as follows [Sexana 1982]: 
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where 
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For the convergence, existence conditions and other details of the I-function, we 
refer to the original paper by Saxena [1982]. 
We shall use the following notations: 
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The following results will be required here: 
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The results (1.12) can be established by making use the well known Eulerian 
integral 
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The orthogonality property of the generalized prolate spheroidal wave function in 
the   (slightly modified) form ([Gupta 1985], Eq.(3.1)) is     
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where 
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And tn,δ  is the kronecker delta. 
We also use the following lemma ([Gupta 1985], Eq.(2)) in our investigation: 
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MAIN INTEGRAL 
The following integral has been evaluated in this paper: 
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PROOF  
To establish (2.1), we express the generalized prolate spheroidal wave function 
as given in (1.2), the generalized hypergeometric function as infinite series 
([Rainville 1960], Eq.(1.2)), and the general class of polynomials with the help of 
equation (1.9), change the order of integration and summation (which is easily 
seen to be justified due to the absolute convergence of the integral and sums 
involved in the process), then evaluated the inner integral by using (1.12) and 
interpreting the result by using (1.10), we arrive at the right hand side of (2.1).  
 
 

SOLUTION OF THE PROBLEM 
The solution of the problem stated in (1.5) is given by 
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valid under the conditions mentioned with (2.1) and  *I  is given by (2.2). 
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PROOF  
The solution of (1.5) can be written as ([Gupta 1986], Eq.(2.3)) 
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given by (1.2), if t=0 then by the virtue of (1.6), we can obtain 
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This is because the general prolate spheroidal wave function processes the 
orthogonality property (1.15).  
Hence the solution of the problem (1.5) may be expressed as 
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Now, if we take F(x) as given in (1.7) then by (3.2), we have formally 
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Equation (3.5) is valid since F(x) is continuous and of bounded variation in the 
open interval (a,b). Now multiplying both sides of (3.5) by  

11,
)(
)(21,)()( , −>−>⎥
⎦

⎤
⎢
⎣

⎡
−
−

−−− βαφ βαβα

ab
axsxbax l                    

and integrate with respect to x from a to b, changing the order of integration and 
summation ( which is permissible ) on the right, we obtain 
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Using orthogonality property of the generalized prolate spheroidal wave function 
(1.15) on right hand side and the result (2.1) on left hand side of (3.6), we obtain 
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where *I  is defined by (2.2). On substituting the value of  from (3.7) in (3.5) 
and using (1.17), we arrive at the solution of the problem (1,5) as given in (3.1). If 
we take s=0 in (3.4), we get the solution of the problem in terms of the Jocabi 
polynomials. Again, setting 

lA

0== βα  and s=0 in (3.4), we get the solution of 
the problem in terms of the Lengdre functions. 
 
 

APPLICATION  
We shall define the Riemann- Liouville derivative of function f(x) of order  (or 
alternatively  order fractional integral) [Srivastava et al. 1982] by 
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where q is a positive integer and the integral exists.  
For simplicity the special case of the fractional derivative operator  when 

a=0 will be written as . Thus we have  
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Now by setting b=x in (2.1), it can be rewritten as the following fractional integral 
formula 
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where 0)1Re( >+β  and all the condition of validity mentioned with (2.1) are 
satisfied. 
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