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Abstract

Reliability and failure data, both from life testing and from in-service
records, are often modeled by the Weibull or Lognormal distributions so
as to be able to interpolate and/or extrapolate results. The aim of this
research is to discriminate between the Weibull and Lognormal
distributions for complete samples. Both reliability models Weibull and
Lognormal are then illustrated. Median rank regression (MRR) and
maximum likelihood estimation (MLE) data- fitting methods are
described and goodness-of-fit using maximum likelihood ratio (MLR)
and most powerful invariant (MPI) tests. We find the Weibull distribution
better for fitting to lifetime data when comparing with the Lognormal
distribution.

Keywords: Maximum likelihood ratio test, median rank regression,
most powerful invariant test, Weibull and Lognormal distributions.

INTRODUCTION

A life time distribution model can be any probability density function f (t) defined over

the range of time (0, o). The corresponding cumulative distribution F (t) is very useful

function as it gives probability that a randomly selected unit will fail by time t. Cohen
[1951], Dubey [1966], Schlitzer [1966], Lock [1973], Gross and Lurie [1977], Bain
[1978], Gibbons and Vance [1981], Lawless [1982] and Abernethy [1994] among
many others find that there are a number of methods for fitting life data points to a
distribution. We are going to discriminate two most frequently used life time
distributions, Weibull and Lognormal distributions. This discrimination is based on
goodness of fit tests after estimating the both lifetime models by two popular
methods, namely, median rank regression (MRR) and maximum likelihood
estimator (MLE). The goodness-of-fit test can test whether the complete life data

103 ¥J. res. Sci., 2006, 17(2), 103-114



104 G. R. Pasha, M. Shuaib Khan, Ahmed Hesham Pasha

are from the underlying distribution or not. It is often found that the life data,
which has been plotted on the relevant probability paper, fit both the Weibull and
Lognormal lines very well. How do we objectively judge which model is the better
choice? Abernethy [1996] and Fulton [1995] developed a graphical goodness-of-
fit test and the p-value model.

Firstly, the life time distribution models: Weibull distribution and Lognormal
distribution have been described. Secondly, the data description is given. The
estimation method MRR, MLR and MPI tests are also explained in this section.
Thirdly, the data analysis and discussion of the results is presented while last
section concludes the research work.

THE LIFETIME DISTRIBUTION MODELS

In this section Weibull and Lognormal distributions have been described.

WEIBULL DISTRIBUTION
The Weibull probability distribution has three parameters 77,  and t;. It can be
used to represent the failure probability density function (PDF) with time, so that:

t-t
t—t P Gl
f, (t) = _g (—77 0) e n>0,8>0t, >0—0o<t, <t (1)

where [ is the shape parameter (determining what the Weibull PDF looks like)

and is positive and 7 is a scale parameter and is also positive, {, is a location or
shift or threshold parameter (sometimes called a guarantee time, failure-free time
or minimum life), t, be any real number, If t, =0 then the Weibull distribution is
said to be two-parameter.

LOGNORMAL DISTRIBUTION
The probability density function (PDF) for 3-parameter lognormal distribution is:

i {ln[t_etf’” 0>0p>0t>0-0<ty <t, (2
() = = exp- 1,
Var(t - ty) 2

where p is the shape parameter, @ is the scale parameter and t, is the location
parameter. The units of p,6 and t, are the same as in the Weibull case. The
Lognormal is said to be a two-parameter distribution when t, = 0. The

restrictions on the values of{,, 0, p for the Lognormal distribution are as stated
in Eq. (2).
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METHODOLOGY

We take the lifetime data of data 30 electric tubes lights used by Kale and Sinha
[1971]. The data are given as Table A in Appendix. The X values in the data list
represent actual electric tubes life data in hours. The data was analyzed by fitting
Weibull and Lognormal models. The Median Rank Regression (MRR) and the
Maximum Likelihood Estimation (MLE) were applied to estimate the unknown
parameters. For the discrimination between the Weibull and the Lognormal, the
MLR and MPI tests were used.

MEDIAN RANK REGRESSION (MRR) FOR COMPLETE SAMPLES

The lifetime data, when plotted on probability paper are approximately linear, so
the parameters can be estimated by usual least squares (LS) method.
Regressing Y on X minimizes the sum of squares of residual variation in the Y
direction, whereas regressing X on Y minimizes it in the X direction. Berkson
[1950] studied these two regressions and suggested that the scale with larger
error should be regarded as the dependent variable. For life data analysis, the
time-to failure, X always shows much more error than the median ranks
especially for in-service failure data. So, Abernethy [1994] concluded that the
better method for probability paper plot is to regress X on Y. He also showed
that regressing X on Y has a better accuracy than regressing Y on X. So our
study considers both regressions; X on Y and Y on X.

The Weibull cumulative distribution function (CDF), denoted by F(t), is:

_(ttloys
Fo.(t)=1-e 7 3)
The linear form of the resulting Weibull CDF can be represented by a rearranged
version of Eq. (3):

Int ! Inin ! +Inn
= PR (4)
B 1- Fw(t)

Comparing this equation with the linear formy = BX + A, leads to y =Int and

X=1In In{%_ R, (t)}

By minimizing £ and 77 using the LS method one obtains:

) ni xiz—(i xiJ
j = ni:l ni:l :
nZ Xiyi_z XiZ Yi

i=1

: (6)

and

Z Yi Z X;
N = exp ':ln - I_nl,éA’ : (6)
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where n is the sample size and ~ indicates an estimate. The mathematical
expression for X; and Y, are:

1
=Inin| ——— - =Int..
x, =In nL_ 3 (ti)i| and Y, =Int,

F(ti) can be estimated by using Benard’s formula,

, which is a good
n+0.4

approximation to the median rank estimator [Tobias and Trindade 1986,
Abernethy 1994]. The Benard’s median rank was used because it showed the best

performance and is the most widely used rank to estimate F(ti ) The procedure

for ranking complete data is as follows:
1. List the time to failure data from small to large.
2. Use Benard's formula to assign median ranks to each failure.

3. Estimate the £ and 7 by Egs. (5) and (6).
The F(ti) is estimated from the median ranks. Once & and b are obtained,

the ﬁA’ and 77 can easily be obtained.

The estimator of p is the sample correlation coefficient, ,5 given by:
n
> (x-xXy-7)
_ i=1
n n
2 x=x) > (y-y)
i=1 i=1

The Lognormal CDF is the integral of the PDF from 0 to time- to-failure t. It can
be written in terms of the standard Normal CDF as:

FL(t):(D{In(t_etojp} ®)

The Lognormal CDF, when plotted against appropriate probability axes, appears
linear and so can be represented by a rearranged version of Eq. (8) as:

5 ()

Zp
Int=—-+1né6 (9)
Yo,

Comparing this with the linear formy =B x + A, leadstoy = Int andx = Z b
The same LS procedure, as applied for the Weibull distribution, yields.

(10)
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) Z Yi Z X
and g = eXp i=1 _ =1

_ (12)
n np

where X; = Z .y, =Int; and z, = ¢’1(zp) is the percentile of the standard

Normal CDF, which is widely tabulated. Again F(ti)= ¢(Zp)can be estimated

using Bernard’s formula. The same ranking procedure was used as applied for
the Weibull distribution. The rank table for Weibull is the same as that of
Lognormal as shown in Table A.

THE MAXIMUM LIKELIHOOD RATIO (MLR) TEST
For MLR, the hypothesis setting is as follows:

H, : underlying distribution is the Weibull distribution.

H, : underlying distribution is the Lognormal distribution.
Level of significance is set at & = 0.01,0.05,0.10,0.20
The MLR test statistics (TS) is:

1
TS yr = (12)

(V275 %)y H t; £, (t;)

Dumonceaux et al. [1973] also proposed the reverse hypothesis, as follows:
H,, : Underlying distribution is the Lognormal distribution.

H, : Underlying distribution is the Weibull distribution.
Then, the test statistics (TS) of MLR becomes:

TS yr = V270€7 Hti fo(t;) (13)
i=1

The null hypothesis was rejected in the favor of alternative hypothesis whenever
TSMLRZ TSMLR (tabulatEd).

THE MOST POWERFUL INVARIANT (MPI) TEST

Kent [1979] defined the most powerful invariant (MPI) test statistics for selection
between the Weibull and Lognormal distributions given by:

n B n-1
pror([Tn | vz e *
50

where n is sample size, ,3 and & can be determined by the method of MLE.

TS MPI —

(14)
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If TS > 1, then the data could come from the Weibull distribution alternately,
If TS < 1, then the data could come from the Lognormal distribution.
So Eg. (12) can be rearranged as:

n N\ (n-t
(Hti} e 1
(itﬂ“jn Y RO NN o

After taking logarithms of both sides:
A3 n—1 0. ~ Inf)
>nt o nin > 44| |>. —(n—l)ln(Boa/Zﬂ)—lnﬂ“(n)]—T
i=1 i=1
(16)

Let the left-hand side of the expression equate to A and the right-hand side of the
expression equate to B, to simplify the inequality. Hence, if A > B, then this
indicates that the samples could come from the Weibull distribution. Conversely,
if B>A, then it indicates that the samples could come from the Lognormal
distribution.

RESULTS AND DISCUSSION
The rank table is shown in Table A. The Weibull probability plot is obtained using

Weibull Y-Bath™ as shown in Fig. 1. From Fig. 1, estimates of 77 = 656.5785

and ,B = 1.0435 were obtained.

By plotting the data (x on y) on probability paper the trend may appear curved,
either concave down or up. These curvatures may indicate that the origin of the
data is not the same as the zero from which the life data has been measured. In

such cases a location parameter t, may be needed to make the origins coincide.
Concave downward implies that a value t;> 0 is needed to convert the data.

Concave upward implies that a valuet, < 0 is needed. In practice concave
downward situations are more often seen than concave upward [Abernethy 1994].
The case of t,>0 indicates that failures cannot occur until after a certain period
of time has elapsed. During this period the units cannot fail. This is why t,is,

sometimes, called guarantee parameter. The case of t;< 0 indicates that some

duty may have occurred.
Fig. 2 illustrates how to deal with the 3-parameter Weibull distribution. Using

Weibull Y-Bath™ 7 = 695.5714, 8 = 1.2555 and {, = -31.6771 can be readily
obtained. Fig. 2 shows the tube light failures using MRR. Note that the final result
of 17 must be adjusted for t, to return to the original life scale, so that 77 =
695.5714 — 31.6771 = 663.8943. The result is fo = -31.6771 when correlation
coefficient CC = 0.9706 reaches the maximum using a graphical method.
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Fig. 1:

2-P Weibull Analysis for Tube Light Data.
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Fig. 2: 3-P Weibull Analysis for Tube Light Data.
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When the data (y on x) was plotted on probability paper the trend appeared
curved. Here again the tube light data [Kale and Sinha 1971] is taken to illustrate
how to deal with the 2-parameter Weibull distribution. Using Weibull Y - Bath™

n = 668.9425, S = 1.0080 and similarly for 3-parameter Weibull distribution

using Weibull Y-Bath™ 7 = 705.3958, S = 1.2201, f, = -31.6221 can be
readily obtained. Results show the tube light failures using MRR. Note that the
final result of 77 must be adjusted for to t, return to the original life scale, so that

n = 705.3958 — 31.6221 = 673.7737. The result is fo = -31.6221 when CC =

0.9706 reaches the maximum using a graphical method.

win SMTTH™, as shown in Fig. 3, this terminology stands for anti-log of the log-
value mean. The sdF is a multiplier / divisor and represents the anti-log of life
log-value standard deviation [Fulton 1995]. The estimated values obtained were

muAL = 385.4 = ¢ and sdF = 3.176. The value of sdF = 3.176 leads to a result
for p =0.8654.

2-p Lognormal analysis for tube T
light data
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Fig. 3. 2-P Lognormal Analysis for Tube Light Data.

The 3-parameter Lognormal analysis for the tube light data are similar to the
Weibull case as shown in Fig. 4. The estimated values obtained were muAL =

1256 :é, fo =-723.2 and sdF = 1.411. The value of sdF = 1.411 leads to a result
for p = 2.9045. The final result of & must be adjusted for t, to return to the

original life scale. So é =1256.0-723.2 = 532.8.
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Fig. 4: 3-P Lognormal Analysis for Tube Light Data.
The results of the MRR method are summarized as presented in Table 1.
Table 1: Summary of Results for Tube Light Data Using MRR Method (n = 30).
Distributions Weibull Lognormal
Method Parameters 2-P 3-P Parameters 2-P 3-P
n 656.5785 695.5714 0 385.400 1256
MRR ﬂ 1.0435 1.2555 P 3.176 1.411
1:0 0.0 -31.6177 t0 0.0 -723.2
CcC 0.9660 0.9706 cC 0.888 0.975

GOODNESS-OF-FIT
There are many methods of measuring goodness-of-fit such as Chi-square test
and MLR test etc. Dumonceaux et al. [1973], Lawless [1982], O’Connor [1991] and
Dodson [1994] used other methods such as MPI tests to evaluate the difference
between the Weibull and Lognormal distributions. The MLR and MPI tests were
considered for the present study.
Using estimated values of unknown parameters in Eq. (12), the value of MLR

statistics was found to be TS |,z = 0.8738 . when this value was compared

with the critical values given in Table 2 for different « , the null hypothesis H,

was accepted in all the cases, which led to the conclusion that the Weibull is a
statistically significantly better fit than the Lognormal.
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By considering reverse hypothesis proposed by Dumonceaux et el. [1973], one has

TSMLR =1.1444 The same conclusion can again be drawn for the better fit of

Weibull distribution over that of Lognormal.

Finally for MPI test, A = -101.569 > B = -105.0.61. The results of the MPI tests
were also found to be consistent with MLR tests. Therefore, It can be deduced
that the data could have come from the Weibull distribution.

Table 2: Critical Values of MLR Test for Discriminating between the Weibull and Lognormal
Distributions.

n a=02 a=01 a =0.05 a=0.01
TSW ik TSL g TSW 5 TSL r  TSW MLR TSL i TSW MLR TSL ik
20 1.008 1.015 1.041 1.038 1.067 1.028 1.120 1144
30  0.991 0.993 1.019 1.020 1.041 1.044 1.088 1.095
40  0.980 0.984 1.005 1.007 1.026 1.028 1.063 1.070
50 0.974 0.976 0.995 0.998 1.016 1.014 1.045 1.054

CONCLUSIONS
The Weibull distribution and Lognormal distributions are extensively used in
reliability and life testing. We have concluded that while comparing these two
distributions, Weibull distribution provides better fit to lifetime data. We also note
that MLR and MPI tests are consistent with this discrimination between the
Weibull with the Lognormal distribution.
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Appendix
Table A: Weibull Analysis for Electric Tubes Light data.
Rank Table
Set Point x-value Quantity Benard’'s Rank
1 01 20.15414 1 2.303E-02
1 02 26.61217 1 5.592E-02
1 03 53.55068 1 8.882E-02
1 04 61.43307 1 0.1217105
1 05 111.5966 1 0.1546053
1 06 118.1282 1 0.1875000
1 07 213.5254 1 0.2203947
1 08 227.5179 1 0.2532895
1 09 234.7571 1 0.2861842
1 10 370.9544 1 0.3190790
1 11 387.6415 1 0.3519737
1 12 421.5968 1 0.3848684
1 13 427.3025 1 0.4177631
1 14 472.4213 1 0.4506579
1 15 515.6355 1 0.4835526
1 16 523.4068 1 0.5164474
1 17 554.0378 1 0.5493421
1 18 595.6667 1 0.5822368
1 19 718.2560 1 0.6151316
1 20 812.9323 1 0.6480263
1 21 816.7766 1 0.6809211
1 22 936.1332 1 0.7138158
1 23 952.9595 1 0.7467105
1 24 984.0899 1 0.7796053
1 25 992.5800 1 0.8125000
1 26 1041.677 1 0.8453947
1 27 1080.865 1 0.8782895
1 28 1143.756 1 0.9111842
1 29 1270.303 1 0.9440789
1 30 1627.440 1 0.9769737
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