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Abstract: The main thrust of this paper is to investigate the  ridge regression 
problem in multicollinear data. The properties of ridge estimator are discussed. 
Variance inflation factors, eigen values and standardization problem are studied 
through an empirical comparison between OLS and ridge regression method by 
regressing number of persons employed on five variables. Methods to choose 
biasing parameter K are also presented. 
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INTRODUCTION 
In linear estimation, one postulates a model of the form 

Y = X β + ε 
The n x p matrix X contains the values of p predictor variable at each of n 
data points. Y is the vector of the observed values, β is the px1 vector of 
the population values and ε is an nx1 vector of experimental errors having 
the properties E(ε) =0 and E(ε′ε) =σ2/n. For convenience, we assume that 
the X variables are scaled so that (X′X) has the form of a correlation 
matrix. The conventional estimator for β is the least squares estimator, β^, 
where β^ is chosen to minimize the sum of squares of residuals Φ( β^ ). 

Φ( β^ ) = (Y-X β^)′ (Y- X β^) 
The two key properties of  β^ are that it is unbiased, that is, E(β^) = β and 
it has minimum variance among all linear unbiased estimators. The 
variance matrix is  

V(β) = σ2 (X′X)-1  
In the development of ridge regression, Hoerl and Kennard [1976] focus 
attention on the eigen values of  (X′X).  A serious non-orthogonal or “ill-
conditioned” problem is characterized by the fact that the smallest eigen 
value, λmin is very much smaller than unity.  Hoerl and Kennard [1976] 
have summarized dramatic inadequacy of least squares for 
nonorthogonal problems by noting that the expected squared length of 
the coefficient vector is  

E( β^′β^ ) =  β′ β + σ2 Tr (X′X)-1   =  β′ β + σ2 / λmin  
Thus β^, the least squares coefficient vector, is much too long, on the 
average, for ill conditioned data, since  λmin < 1. The least squares solution 
yields coefficients whose absolute values are too large and whose signs 
may actually reverse with negligible changes in the data [Buonaccorsi 
1996].  
 

RIDGE SOLUTION 
The ridge estimator is obtained by solving (X′X + KI) β^* = g to give  
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 β^* =(X′X + KI)-1 g 
where g =X′Y and K is ridge parameter holds K≥0. In general, there is an 
“optimum” value of K for any problem. But it is desirable to examine the 
ridge solution for a range of admissible values of K. Hoerl gave the name 
ridge regression to his procedure because of similarity of its mathematics 
to methods he used earlier, i.e., “ridge analysis”, for graphically depicting 
the characteristics of second order response surface equations in many 
predictor variables [Cheng and Schneeeweiss 1996, Cook 1999]. 
Key properties applicable to ridge regression are:  
(i) β^* minimizes the sum of squared residuals on the sphere centered at 

the origin whose radius is the length of  β^*. That is, for a given sum of 
squared residuals, it is the coefficient vector with minimum length.  

(ii) The sum of squared residuals is an increasing function of K.  
(iii) β^*  β^* <  = β′ β, and  β^*′ β^* → as K ----- ∞.  
(iv) The ratio of the largest characteristic root of the design matrix (X′X + 

KI) to the smallest root, called the condition number of the data, is (λ1 
+K)/(λK +K), where λ1 ≥ λ2 ≥………λK are  the ordered roots of X′X and 
is a decreasing function of K. The condition number is often taken as 
a measure of ill-conditioning and thus related to the stability of the 
coefficient estimates.  

(v)  The ridge estimator  
    β^* = [IK + K( X′X)-1 ])-1 β^ = W β^  
       is a linear transformation of the least square estimator.  
(vi)  The mean square error of β* is  

E[(β^* -β)′( β^* -β)] = E[(β^* - β)′W ′W( β^- β) ]+(Wβ- β) ′(Wβ- β)  
                          = σ2  ∑λi (λi +K) +K2 β′( X′X + KI)-2 β 
(vii)  There always exist a K>0, such that  β^* has a smaller MSE than  β^. 
 

MULTICOLLINEARITY 
Multicollinearity can cause serious problem in estimation and prediction, 
increasing the variance of least squares estimator of the regression 
coefficients and tending to produce least squares estimates that are too 
large in absolute value [Wethrill 1986]. If the two explanatory variables 
are involved, there is no guarantee that any of the pair wise correlation 
coefficients will be large. Variance inflation factor (VIF) is also used to 
detect multicollinearity. Marquardt and Snee [1970] suggest that VIF 
greater than 10 indicates multicollinearity. In the class of biased estima-
tors, the most popular is ridge regression. Ridge regression overcomes 
problem of multicollinearity by adding a small quantity to the diagonal of  
X′ (which is in correlation form) i.e.  β^* =( X′X + KI)-1 X′ Y where X′X and 
X′ Y are in correlation form.  
In the presence of multicollinearity the ridge estimator is much more 
stable (i.e. has smaller variance) than the OLS. But the cost of this 
procedure is that it introduces bias; so the elements of D are chosen to 
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keep this bias small enough so that the overall mean squared error is still 
reduced.  
 

DATA STANDARDIZATION IN RIDGE REGRESSION 
One source of controversy in ridge regression is the availability of re-
centering and rescaling the original data to make X′X a correlation matrix. 
Standardization is unnecessary for most theoretical results and not 
advisable for these cases when the investigator is committed to the 
centering, scaling and MSE computation in original units. Therefore it may 
be confusing when Hoerl and Kennard [1970a] and Marquardt and Snee 
[1970] recommended standardization without ruling out these cases. 
Often there is nothing different in a model where (i) a temperature is 
measured in ˚C or ˚F.  (ii) a money variable is measure in U.S. dollars, 
Pakistani Rs., or a linear combination of prices of various countries 
reflected by, say, the Special Drawing Rights; and (iii) the base year of an 
index number deflator variable is 1961 or 1976 etc. For these “essentially 
similar” models the investigator wants the regression coefficient to be 
“essentially linear”, i.e. “equivalent”. The advantage of standardization is 
that it makes the coefficient βi comparable with each other.  
 

EIGEN VALUES 
Let Y = AX, where A = aij , (ij = 1,2,………,n), be a linear transformation 
over F. In general, the transformation carries a vector X = x1, x2, ……xn is 
a vector Y = [y1 , …..yn ]′ whose only connection with X is through the 
transformation. We shall investigate here the possibility of certain vectors 
X being carried by the transformation into X, where is either a scalar or F 
or of some field of which F is subfield. Any vector, which by the 
transformation is carried out into X, that is, any vector X for  

AX = λX 
is called invariant vector under the transformation. The character equation 
we have  

       λ - a11     - a12  …… - a1n       x1  
              - a12  λ - a22    ……      - a2n        x2  
     X – AX = (I – A)X =     :               :                     :             :     = 0 

 :               :                     :             : 
 :               :      ……        :             : 

       λ - an1      -an2 …… - ann       xn 
 
The system of equation has non-trivial solution if and only if (λI – A) = 0. 
The expansion of this determinant yields a polynomial, Φ(λ) of degree in λ 
which is known as the characteristic polynomial off the transformation or 
of matrix A. The equation Φ(λ) = 0 is called the characteristics roots of A. 
Those characteristics roots are called eigen values and characteristic 
vectors are called eigen vectors. 
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 VARIANCE INFLATION FACTOR (VIF) 
The VIF is related to the results of auxiliary regression and is measured 
by the diagonal elements of (X′X)-1. The jth diagonal elements of ( X′X)-1  
can be represented as (1-Rj2)-2, where Rj2 is the coefficient of determi-
nation from the auxiliary regression of the jth independent variable on the 
other (K-1) repressors, When Rj2′ Y=( X′X + KI)-1 X′ Y→ 1, the jth diagonal 
element of (X′X)-1, which when multiplied by σ2 gives the sampling 
variance of the jth element off ‘β`, gets very large and hence the name 
VIF.  Despite the intuitive nature of this measure, however, it has a 
serious flaw that presents it from becoming a useful indicator of ill 
conditioning. If there is a single, near-linear dependency, the large 
diagonal elements of (X′X)-1 indicate which variable are involved. 
However, if two or more linear dependencies are present, it becomes 
difficult to sort them out by inspecting (X′X)-1.  
 

SELECTION OF VARIABLES IN RIDGE REGRESSION  
BY RIDGE TRACE 

Variable selection procedures often do not perform well when the 
predictor variables are highly correlated [Velilla 1998, Hsich 1997]. 
Marquardt and Snee [1970] point out that when the data is highly multi- 
collinear, the maximum variance inflation completely destabilizes all the 
criteria obtained from the least squares estimates. Hoerl and Kennard 
[1970b] suggest that the ridge trace can be used as a guide for variable 
selection. They propose the following procedure for eliminating predictor 
variables from the full model.  
(i) Eliminate predictor variables that are stable but have small predicting 

power;  that is those with small standardized regression coefficient. 
(ii) Eliminate predictor variables with unstable coefficients that do not 

hold their predicting power because the coefficients tend to zero as K 
increases. 

(iii) Eliminate one or more of the remaining predictor variables that have 
small coefficients. The subset of the remaining predictor variable is 
used in the final model. 

 
RIDGE ESTIMATORS 

The purpose of ridge trace is to give the analyst a compact pictures of the 
effect of the non orthogonality of  X′X  on the estimation of  β. Hoerl et al. 
[1975] recommended KHKB = P σ2 /β′ β as general rule where the 
parameters are estimated from the full equation least squares fit. Their  
studies suggest that the resulting ridge estimator yields coefficient 
estimates with smaller mean squared error than that obtained from least 
squares. In a latter paper Hoerl and Kennard [1975] suggest an iterative 
procedure where KHKB = Pσ^2 / βi

^′ βi
^  where  βi

^ = βR
~(Ki).  

Farebrother [1975] suggested K = σ^2 / β^′ β^, which for the Gonman-
Toman data, yields K= 0.003 with this formula, It is of interest to note that 
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in the case  X′X = I, the choice of K which will minimize E[Lj
2 (K)] is K = t 

σ^2 / β′ β. Marquardt and Snee [1970]  suggested using the value of K for 
which the maximum variance inflation factor is “between one and ten and 
close to one”.  Mallows [1973] extended the concept of  Cp- plots to  CK- 
plots, which may be used to determine K. Specifically, he suggested 
plotting CK , versus VK where 

CK = (RSSK / σ^2 ) – n + 2 + 2 tr(XL) 
VK = 1 + tr(X′XLL′)  

and  L = (X′X  + KI) -1X′. 
Here RSSK is the residual sum of squares as a function of K. The 
suggestion is to choose K to minimize  CK . Newhouse and Oman [1971] 
conducted a simulation study of ridge estimators. Their study was 
restricted to the case of two predictors for two different values of X, the 
correlation between two predictors and a number of schemes for 
choosing K. Their conclusions indicated the least for the case P = 2 that 
ridge estimator may be worse than OLS and in general, fail to establish 
any superiority. They further suggested that there is nothing to suggest 
that results in the higher dimensions (P>2) would be substantially 
different. The basic idea is to choose K so that  

 β̃R′ β̃R
~ =  β^′ β^ - σ2 ∑1/ λi    

If the RHS is negative, they suggest two modifications. Although neither 
method was better than least squares in all cases, they concluded, based 
on optimal rule for choosing K, that there is a sufficient potential 
improvement to warrant further investigations of ridge estimators. They 
also considered p = 2 and found that their results were comparable to 
those of Newhouse and Oman [1971]. They suggest that there may be 
some advantage to ridge estimators in higher dimensions which is not 
available for p = 2. This is consistent with the results of Stein [1960]. They 
also report that the values of K chosen by their optimal rules were 
originally less than those obtained from the ridge trace. Lawless and 
Wang [1976] proposed first orthogonalizing the X′X matrix by finding a 
matrix p such that P′X′XP = Ø, where is the diagonal matrix whose 
elements are the eigenvalues λi   of X′X and setting  

 KLW  = Pσ2 /∑ λi  gi
2  

where gi is the transformed coefficients, g = P′ β. Lawless and Wang 
[1976] found their estimator did well. λi  are the eigen values.  
 

COMPARISON BETWEEN THE OLS AND RIDGE REGRESSION 
We try to justify that ridge regression is better than OLS method. The 
following regression model is fitted to the data in which number of 
persons employed are regressed on 5 predictor variables 

Y = βO + β1 X1 + β2 X2 + β3X3  + β4X4 + β5X5 + ℮i 
Y = No. of persons employed (million), X1 = Land cultivated (million 
hectors), X2 = Inflation rate %, X3= No. of establishment, X4= Population 
(million), X5 = Literacy rate (%). 



 
 
 
 
 

 
 

G.R. Pasha and Muhammad Akbar Ali Shah 102 

   Y               X1            X2        X3                   X4              X5 
1974-75              20.30  19.55         0.2671  3286  68.924       22.2 

               20.08       19.82         0.1166       3248          71.033             22.5 
               21.89       19.76         0.1178       3373         73.205             22.8 
               22.73       20.10         0.0779       3676              75.444             23.2 
              23.62       19.98          0.0663       3715              77.516             23.4 
               24.15       20.23          0.1072       3750              80.130             23.7 
               24.70       20.30          0.1237       3815              82.580             24.0 

                  25.27       20.42          0.1000       3882              84.254             26.2 
               25.85       20.31          0.0448       3931              87.758             26.5 
               26.40       20.33          0.0836       4047              90.480             26.9 
               26.96       20.61          0.0746       4423              93.286             27.2 
               27.93       20.67          0.0483       4349              96.180             27.5 
               28.70       20.92          0.0387       4544              99.162             27.9 
               28.99       20.66          0.3884       4573            102.230             28.0 
               29.99       20.73          0.3087       4595            105.409             28.1 
               30.82       20.73          0.3854       4543            108.678             28.3 
               31.78       20.77          0.3886       4589            111.938             28.6 
               31.78       20.96          0.2910       4656            111.938             34.9 
               31.94       21.06          0.4112       4849            113.610             36.0 
               32.45       21.40          0.2129       4809            116.470             37.2 
               33.29       21.51          0.6121       4852            119.390             38.4 
               33.60       21.55          0.4291       4998            122.361             39.6 
               34.42       21.68         0.1231       5072            125.387             40.9 
               36.84       21.98         0.5120       4992            128.421             42.2 
               37.73       21.96         0.4001       4924            131.510             43.6 
               38.59       21.93          0.4014       4992            134.511             45.0 
               40.40       21.99          0.4423       5081            137.512             47.1 

2000-01     41.20       21.99          0.4328       5128            140.473            52.0 
Source: Economic Survey of Pakistan 2000-01. 
 

EMPIRICAL RESULTS 
Uncorrected sum of squares and cross product matrix 

     X1              X2                       X3         X4            X5  Y 
X1 1.62x104 
X2 8.00x101       8.72x101       
X3 2.16x106     1.59x104        4.72x108

 
X4 3.98x104       3.67x101      7.51x106 1.24x105

 
X5 1.98x104       3.06x101      2.54x106 5.76x104        1.45x104

 
Y 1.25x104       8.65x101      2.21x106 5.21x104        2.21x104        1.51x104

 
 
Correct sum of squares and cross products matrix  

   X1            X2     X3       X4            X5       Y 
X1 1.34x101 
X2 1.00x100       3.44x101       
X3 8.54x103     7.45x102      6.34x106

 
X4 3.56x102       3.78x101      2.87x105 9.23x103

 
X5 6.41x101       5.81x100      3.98x104 1.72x103           2.91x102

 
Y 1.20x104       8.60x101      2.62x106 5.24x104            2.87x104 1.58x104 
 
 0.949 
                 0.565  
       X′Y =         0.924      Eigen values = [4.1352   0.6939   0.1223   0.0327    0.0143] 
 0.996 
                         0.973 
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  15.9031       1.8922         1.8866          -6.2106             -11.9521 
                       2.2547        0.9698          -5.8593               -1.8765 
        (X′X )-1 =              8.0819          -6.6858               -3.2455 

 40.4973 -24.4707 
  38.5121 

 

Coefficient of determination (R-square) = 0.995, adjusted R2 = 0.993. SE 
of estimate = 0.395. Estimate of σ^2 = 0.1549. Now computing OLS 
estimates.  
   0.0839 
                     -0.0489 

            β^  = -0.0109 
  1.1380                 
 -0.1855  

As most of the variation is found in first three eigen values and maximum 
VIF is 40.4973, which is greater multicollinearity. We also see that R2

xixj, 
R2

  are very high, and least square estimates are unstable. The predictor 
variables are correlated so we can apply ridge regression techniques to 
get stable set of coefficients. 
 
i) Ridge Trace  i.e. (X′X )-1 

,  β^*  =( X′X + KI)-1 X′ Y 
(i)    K = 0.001 (ii)  K = 0.002  (iii) K = 0.005  (iv)   K = 0.01 
(v)   K = 0.02 (vi) K = 0.03 (vii) K = 0.04 (viii) K = 0.05 
(ix)   K = 0.06 (x)  K = 0.07  (xi)  K = 0.08 (xii)  K = 0.09 
(xiii) K = 0.10 

Plotting the values of β on graph and finding the value of K i.e. 0.05 < K < 
0.06 i.e. K = 0.055 
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 MSE(β^) = 6.2532  K= 0.055 MSE(β^* ) = 2.5006 
ii) KHKB   = 0.578 
iii) KF   = 0.1165 
iv) KLW  = 0.4231 
v) KPZ  = 0.0765 
vi) KPZ   by VIF 

0.06 ≤ K ≤ 0.50. We can take any value in this range. The results are 
summarized in the following Table. 
 
Table: Comparison of coefficient and MSE’s for different Ridge Regression method andOLS method 
  Coefficient Ktr KHKB KF KLW KPZ OLS  
 β1

* 0.1870 0.205 0.209 0.211 0.200  0.839  
 β2

* 0.0501 0.901 0.069 0.088 0.061       -0.049 
 β3

* 0.1203 0.181 0.154 0.182 0.139 -0.139 
 β4

* 0.4702 0.239 0.363 0.257 0.467  1.138 
 β5

* 0.1882 0.208 0.215 0.216 0.206 -0.186 
 MSE 2.5006 1.280 1.715 1.366 1.991   6.253 
 

DISCUSSION AND CONCLUSIONS 
The number of persons employed in Pakistan is regressed on 5 predictor 
variables. All the symptoms of applying ridge regression are found in this 
problem. So we adopted six procedures for the choosing biasing ridge 
parameter. We note that all methods are better than OLS as it is clear 
from the table. The six procedures are discussed as follows: 
First method is Ridge trace in which we start from K=0 and then after 
taking three values 0.001, 0.002, 0.005 for K, we give the equal space of 
0.01. We plot the regression coefficient against K. The system has been 
stabilized at 0.05 <K< 0.06 i.e. K= 0.055 is the ridge parameter. But a 
very frequent criticism on ridge regression is that it is subjective 
approach. This technique is also very useful for selection of variables. We 
observe following points from the graph: 
(a) The variable X1 and X2 has not so much variation after introducing 

bias in the system and they are stable for very high value of K. So 
they have no predictive power and we exclude them from the model.  

(b) The variable X3 has smaller value for K=0 and when K increases and 
we can not exclude it from the model. 

(c) The variable X4, X5  are the coefficients which are varying very rapidly. 
The variable X5  has the most smaller value but with the increasing K 
it move upward from zero and obtain its predictive power. So we 
include this in our model. The variable X4 loose its prediction power at 
the initial stage but then it go toward zero. So no complete statement 
can be made about the variable X4. We are including this variable 
because it has still highest predictive power. Our selected model by 
Ridge trace is  

Y = β0 + β1 X1 + β2 X2 + β3X3  + β4X4 + β5X5 + ℮i 
The second method for the selection of K=0 0.116 is given by Farebrother 
[1975] but Hoerl [1962], Kennard and Baldwin [1985] showed that their 
estimator is better than Farebrother [1975] and made simulation in the 
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favor of their estimator and prove that it has smaller MSE in more than 
50% problems.  We observe that his KHKB = 0.58 gives the smaller MSE, 
but Wichn and Wahba [1988] showed that KHKB is doing it poorly. 
Lawless and Wang [1976] modify their estimator and they make use of 
eigen values also and found that their estimator is doing well. This gives 
KLW = 0.42. The technique developed in this communication seems to be 
very reasonable because of having smaller bias and smaller MSE. This 
method gives value of KPZ very close to ridge trace. So we can say that 
either the KHKB  or KPZ  is the best one. Table shows that Ridge regression 
by any method is best one than OLS method. 
 
References 
Buonaccorsi, J.P. (1996) “A modified estimating equation approach to 

correcting for measurement error in regression”, Biometrika, 83, 433-
440 

Cheng, C.-L. and Schneeweiss, H. (1996) “The polynomial regression 
with errors in variables”, Discussion Paper 42, Sonderforschungr-
bercich 386, University of Munich, Munich. 

Cook, R.D. (1999) “Applied Regression Including Computing  and 
Graphics”, Wiley, New York. 

Farebrother, (1975) “Principal component estimators and minimum mean 
squares criteria in regression analysis”, Review of Econometrics and 
statistics, 54, 332-336. 

Hoerl,  A.E. and Kennard, R.W. (1975) “Ridge  regression; some 
simulations”, Commun. Statist. Theor. Meth., 5(4), 307-323. 

Hoerl, A.E. (1962) “Application of Ridge Analysis to regression problems”, 
Chemical Engineering Progress. 58, 54-59.  

Hoerl, A.E. and Kennard, R.W. (1970a) “Ridge regression; biased 
estimation for non orthogonal problems”, Techonometrics 12, 55-67. 

Hoerl, A.E. and Kennard, R.W. (1970b) “Ridge regression: an application 
to non orthogonal problems”, Technometrics, 12, 69-82. 

Hoerl, A.E. and Kennard, R.W. (1976) “Ridge regression: iterative 
estimation of the biasing parameter”, Commun. Statist. Theor. Meth. 
5(1), 77-88. 

Hoerl, A.E., Kennard, R.W. and Hoerl, R.W. (1975) “Practical use of 
Ridge regression; a challenge met”, The Journal of the Royal 
Statistical Society C, 34(2), 114-120. 

Hsich, F. (1997) “Estimation in homoscedastic linear regression models 
with censored data: an empirical process approach”, Ann. Statist, 25, 
2665-2681. 

Kennard, R.W. and Baldwin (1985) “An examination of criticisms of ridge 
regression estimation methodology”, Technical Report A, Department 
of Statistics, University of Melbourne, Australia. 



 
 
 
 
 

 
 

G.R. Pasha and Muhammad Akbar Ali Shah 106 

 Lawless and Wang, P. (1976) “A simulation study of Ridge and other 
Regression Estimators”, Communications in Statistics, Part A-Theory 
and Method 5, 307-323. 

Mallows, H. (1973) “Modern Factor Analysis”, University of Chicago Press 
Marquardt , D.W. and Snee, R.D. (1970) “Generalized in inverses, Ridge 

regression, Biased linear estimation”, Tecchnometrics, 12, 591-612. 
Marquardt, D.W. and Snee, R.D. (1970) “Ridge regression in practice”. 

The American Stat., 29, 3-19. 
Newhouse, W. and Oman (1971) “A comparison of ridge estimators”, 

Technometrics, 20, 301-311. 
Stein, J. (1960) “A critical view of ridge regression”, The Statistician, 22, 

181-187. 
Velilla, S. (1998) “Accessing the number of linear components in a 

general regression problem”, J. Amer. Stat. Assoc., 93, 1088-1098. 
Wethrill (1986) “Evaluation of ordinary ridge regression”, Bulletin of 

Mathemetical Statistics, 18, 1-35. 
Wichern, D.W. and Churchill, G.A. (1978) “A comparison of ridge  

estimators”, Techonometrics 20, 301-311. 
Wichn, D. and Wahba (1988) “Applied Regression Analysis: A Research 

Tool”, Pacific Gross, California, Wordsworth and Brooks. 
 


