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Abstract: In this paper an unconventional method of the principal components 
regression is adopted for the solution of multicollinearity and an attempt is made 
to show that by using this technique, some fairly precise estimates of the co-
efficient are obtained. This attractive property of the principal components 
regression makes it superior to the OLS method while dealing with the 
multicollinear data. Comparison between the variance of the OLS- estimates and 
the principal components regression  on income and consumption is made. 
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INTRODUCTION 
Principal components regression is a method of inspecting the sample 
data on design matrix for directions of variability and using this 
information to reduce the dimensionality of the estimation problem. The 
reduction in dimensionality is achieved by imposing exact linear 
constraints that are sample specific but have certain minimum variance 
properties, (See Greenberg [1975], Fomby and Hill [1978], and Johnson 
et al. [1973]). The method of principal components regression has 
received considerable attention in recent years as a method for dealing 
with ill-conditioned data (See Farebrother [1972], Fomby and Hill [1978], 
Hill et al. [1977], Johnson et al. [1973], and Massey [1975]). In ill-
conditioned linear regression problems, in which the regressors are 
nearly collinear, the use of ordinary least squares (OLS) is generally to be 
avoided owing to its poor performance, such as large means square 
errors (MSE). In such problems, biased parameter estimators may 
provide much lower MSE values than the unbiased OLS estimator. 
Attempts to find reasonably accurate approximations of the minimum 
MSE parameter estimator have been reported in the literature but 
apparently they were only successful to a limited degree [Soderstrom and 
Stoica 1995]. 
There are various methods of estimating the parameter vector β. These 
include OlS, ridge regression (RR), principal components regression 
(PCR) and partial least squares regression [Butler and Denham 2000, 
Frank and Friedman 1993, Helland 1990, Helland and Almoy 1994].    
For the k-variable regression involving explanatory variables X1,X2,…..,Xk 
an exact linear relationship is said to exist if the following condition is 
satisfied:   λ1 X1+ λ2 X2+,………,λk Xk=0   (1) 
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where λ1,λ2,……..,λk are constants such that not all of them are zero 
simultaneously. The term multicollinearity is used in a broader sense to 
include the case of perfect multicollinearity, as in Eq.(1) , as well as the 
case where the X variables are highly interrelated but not perfectly so as 
follows:  
  λ1 X1+ λ2 X2+,………,λk Xk+∈i=0                       (2) 
where ∈k is a stochastic error term. To see the difference between perfect 
and less than perfect multicollinearity, assume that λ2≠0 then Eq.(1) may 
be written as  
 X2i= -(λ1 /λ2)X1i - (λ3 /(λ2)X3i -,………,- (λk /λ2)Xki  (3) 
Which shows how X2 is exactly linearly related to other variables or how it 
can be derived from a linear combination of other X variables. In this 
situation, the co-efficient of correlation between the variable X2  and the 
linear combination on the right hand side of Eq.(3) is bound to be unity.  
Similarly if λ2≠0, Eq.(2) can be written as 

X2i= -(λ1 /λ2)X1i - (λ3 /(λ2)X3i -,………,- (λk /λ2)Xki –(1/λ2)∈I (4) 
Which shows that X2 is not an exact linear combination of other X’s 
because it is also determined by the stochastic error term ∈i.  
 

THE METHOD OF PRINCIPAL COMPONENTS 
The aim of the method of the principal components is the construction out 
of a set of variables, Xj’s , j=1,2,….,k of new variables zi called principal 
components, which are linear combinations of the X’s.  
 z1t = a11x1t+a21x2t+,……,+ak1xkt;  t = 1,2,….,n 
    z2t = a12x1t+a22x2t+,……,+ak2xkt 

 : 
: 
zkt = a1kx1t+a2kx2t+,……,+akkxkt 

Here a’s are called loadings which are chosen, so constructed principal 
components satisfy two conditions; 
a) The principal components are uncorrelated. 
b) The first principal component z1 absorbs and accounts for the 

maximum possible proportion of the total variation in the set of all X’s, 
the second principal component absorbs the maximum of the 
remaining variation in the X’s (after allowing for the variation 
accounted for the first principal component) and so on. 

 
TEST FOR THE SIGNIFICANCE OF THE LOADINGS 

The loadings are in fact similar to correlation co-efficients. This test does 
not take into account the number of variables, X’s in the set, and the 
order of extraction of the principal components. Burt and Banks [1947] 
have suggested the following adjustment to the standard error of the 
correlation co-efficients in order to obtain the standard errors of the 
loadings  
  S(aij) = {S(rxj xm)}(k/k+I-i)1/2 
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Where k=number of X’s in the set.  I=subscript of Z, i.e., the order of its 
extraction (the position of Z in the extraction process). The Burt-Banks 
formula, clearly takes into account both the number of X’s and the order 
of extraction of the Z’s. 
 

BARLETT’S CRITERIA FOR THE NUMBER OF PRINCIPAL 
COMPONENTS TO BE EXTRACTED 

Assume the latent roots are computed for k variables λ1,λ2,……,λk and 
that the first r roots λ1,λ2,……,λr, (for r<k) seem both sufficiently large and 
sufficiently different to be retained. The question then whether the 
remaining (k-r) roots are sufficiently alike for one to conclude that the 
associated Z’s should be retained in the analysis. Bartlett [1954] has 
suggested that the quantity 

χc
2 =n In {(λr+1,λr+2,……,λk)-1(λr+1,λr+2,……,λk/(k-r))k-r } 

has a χ2-distribution (approximately) with v=1/2(k-r-1)(k-r-2) degrees of 
freedom. The null hypothesis have assume equality of the excluded latent 
roots, i.e.   

H0 = λr+1 =λr+2 =….=λr   
If χc

2 > χ2
(1-α,v), we reject the null hypothesis, that is we accept that the 

excluded latent roots are not equal; hence, we should include additional 
Z’s in our analysis.  
 

PRINCIPAL COMPONENTS REGRESSION 
Let the model under consideration be  

Y  = XAA’β +e 
    = XAθ +e  ∴ A’β = θ 
    =Zθ +e   ∴    Z = XA     (5) 

where A = (a1,….,ak) is a kxk matrix whose columns (ai ) are orthogonal 
characteristic vectors of X’X ordered to correspond to the relative 
magnitudes of the characteristic roots of the positive definite matrix X’X 
and Z = (z1,….,zk) is the nxk matrix o principal components. Accordingly zi 
= Xai is called the ith principal component, where zi’z = λI is the ith largest 
characteristic root of X’X.  
The principal components estimator of β is obtained by deleting one or 
more of the variables zi  applying ordinary parameter space. Assume for 
the moment that Z has been partitioned into two parts z1 the zi to be 
retained, and z2 the zi to be deleted. This partitioning imposes an identical 
partitioning on A. Thus Eq.(5) becomes 
  Y = XA1θ1 + XA2θ2 + e 
         Z1θ1 +'z2θ2 + e     (6) 
Where X = {A1:A2} = {z1:z2} ⇒ θ^1 = (z1’z1)-1z1’Y the LS estimator of θ1 
with z2 omitted from equation (5.2) can be easily obtained. Specifically, 
θ^1  is unbiased due to the orthogonality of z1 and z2. Its variance 
covariance matrix is given by  
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   V(θ^1) = σ2(z1’z1)-1 
Since β = A1θ1 + A2θ2. Omitting the components in z2 means that θ2  has 
implicitly been set equal to zero. Hence A2θ2 =0 and the principal 
components estimator of β is  

β^ = A1θ1^ = Aθ^  
where θ^ = (θ^1,θ^)’ with 0 a null vector of conformable dimension.  
 
EXAMPLE 
Klein and Goldberger [1964] attempted to fit the following regression 
model to the United States economy: 
  Yi = β0 +β1 X1i +β2 X2i +β3 X3i + ei 
where Y=consumption, X1=wage income, X2=non-wage, non-farm income 
X3 = farm income. The data [Klein and Goldberger 1964] are presented in 
Table 1. The results of the data are summarized in Tables 2 and 3. 
 
Table 1: 

Y X1 X2 X3 
62.8 
65.0 
63.9 
67.5 
71.3 
76.6 
86.3 
95.7 
98.3 

100.3 
103.2 
108.9 
108.5 
111.4 

43.41 
46.44 
44.35 
47.82 
51.02 
58.71 
87.69 
76.73 
75.91 
77.62 
78.02 
83.57 
90.59 
95.47 

17.10 
18.65 
17.09 
19.28 
23.24 
28.11 
30.29 
28.26 
27.91 
32.30 
31.39 
35.61 
37.58 
35.17 

3.96 
5.48 
4.37 
4.51 
4.88 
6.37 
8.96 
9.76 
9.31 
9.85 
7.21 
7.39 
7.98 
7.42 

 
Table 2:  
Predictors Coefficients Variances    T-value 
Constant 
Wage income 
Non-wage, non-farm income 
Farm income 

81.703 
 0.380 
 1.418 
 0.533 

46.854 
 0.097 
 0.519 
 1.960 

2.73 
1.22 
1.97 
0.38 

 
Table 3: Analysis of Variance.  
Source of Variation Degree of Freedom Sum of Square Mean Square F-value 
Regression 
Error 
Total 

3 
10 
13 

4151.2 
  367.2 
4518.4 

1383.7 
   36.7 

36.68 

 
                                             1                0.9431             0.1069 
 Correlation matrix           =                                1                 0.7371 
                                                                                                   1 
We see that coefficient of determination R2 = 91.9% is highly significant 
but in contrast all the β’s are insignificant. The computations reveal that 
the cause of multicollinearity lies mainly in the intercorrelation between X1 
and X2. Now it has been proved that the data are highly multicollinear.  
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The principal component analysis based on correlation method yields the 
summary Table 4.  
 
Table 4: Coefficients for Principal Components (Correlations coefficients in parentheses). 

Variable    a1            (rz1x’j)                       a2            (rz2x’j)                    a3              (rz3x’j)                   
X1 
X2 
X3 

0.5973     (0.9747)              -0.2264      (-0.1208)             0.7587      (0.1651) 
0.5813     (0.9486)              -0.5181      (0.2764)            -0.6268       (-0.1364)  
0.5526     (0.9018)               0.8248      (0.4401)            -0.1775       (-0.0386)   

Var(λI)          2.6634                                 0.2847                               0.04738 
 % of variation      89  (approx.)                         9   (approx.)                          2   (approx.) 
 

So the three principal components are:  
Z1 =  0.5973 x’1 + 0.5813x’2 + 0.5526 x’3;  
Z2 = -0.2264 x’1 – 0.5181x’2 + 0.8248 x’3 and 
Z3 =  0.7587 x’1 – 0.1364x’2  – 0.0386 x’3.  

If we retain all these three components we will get the estimate similar to 
the OLS estimates. Now we decide the number of principal components 
to be retained in the analysis. Table 4 shows the co-efficient of correlation 
between the first principal component Z1 and X1, X2 and X3 are quite 
large. In this way, the correlations between Z2 and X1, X2 and X3 are also, 
to some extent, reasonable but the relationships between Z3 and X1, X2 
and X3  are not very strong. It means that the first two principal 
components are sufficient to describe the maximum variation in X’s.  
We see that all the coefficients (loadings) of the first principal component 
are significant. Only third co-efficient of the second principal component is 
significant and not even a single co-efficient of the third principal 
component is significant. Now we statistically conclude the number of 
principal components to be retained. Let we test Ho: λ2=λ3 ; χ2

c=10.007; 
χ2

(0.95,2) = 5.99. We can well reject the null hypothesis of the equality of the 
second and the third principal component. We cannot exclude the second 
and third component at the same time, and retain the first two 
components in the analysis. The above discussion reveals that the third 
principal component is not beneficent for the analysis. The first principal 
component explains 89% of the total sample variance. The first two 
principal components collectively explain 98% of the total sample 
variance. Consequently, sample variation is summarized very well by two 
principal components. Third principal component is not beneficent for the 
analysis.   So, we estimate the regression co-efficients by assuming that 
a’3β=0. If it is true the new estimates will be more precise than the OLS 
estimates. Let we test Ho: a’3β=0  i.e. 0.7587β1-0.6268β2-0.1775β3=0; Fc= 
0.8048; F(0.98,1,10)= 4.96 the hypothesis is rejected. So, the estimate of β’s 
by using principal components regression (which is now equivalent to the 
restricted least square estimates) are  
 
                0.6545        4.004578194x10-1    6.291876605x10-4       0.014897414 
β* =     0.8403  ,   V(β*)=                               0.103504743             -0.362882850 

                            -0.170                                                                1.345366520 
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The fitted model using the principal components regression is  
Ŷi = 0.6545X1+0.8403X2-0.1700X3 with V(β*1)= 4.004578194x10-1 

V(β*2)= 0.103504743;  V(β*3)= 1.34536652 

On comparing V(β^) and V(β*), we come to know that by using the 
principal components regression, there is a fall of 31.3% in the variance 
of β^3, 80.05% in the variance of β^2 and 95.8% in the variance of β^1. 
 

CONCLUSIONS 
The principal components and their co-efficients (loadings) are obtained 
by using the correlation matrix of the regressors. All the loading of the 
third principal component are insignificant. Moreover, the correlation 
between original variables X’s (standardized) and the third principal 
component are insignificant. We, therefore, exclude the third principal 
component from the analysis and retain only the first two components. 
The model is re-estimated using the first two principal components and 
explicitly assuming that a3β=0. There is a slight decrease of 0.7% in the 
co-efficient of determination due to the use of principal components 
regression. Looking at the results, we observe that the principal 
components regression technique provides the best estimates of the co-
efficients of the population regression function, in particular when the 
sample data are suffering from multicollinearity. If the original variables 
are uncorrelated then there is no use of the principal components 
analysis. Multicollinearity, if present among the regressors, seriously 
affect the property of minimum variance of the OLS estimates. If the 
purpose is just of the forecasting or prediction, then the existence of 
multicollinearity does not harm any more but if the aim is to get the 
precise estimates, some alternative ways should be adopted. Of many 
other solutions to the incidence of multicollinearity, the principal 
components regression is better due to its advantages.  
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