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Abstract: The classes C2,4 and C4,,3 of coefficients of one-dimensional non-
autonomous differential equations are investigated for periodic solutions. Seven 
and Five periodic solutions are found for classes C2,4 and C4,3 respectively. The 
method we used is bifurcation of periodic solution from a fine - focus. 
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INTRODUCTION 

This paper is concerned with solutions of non-autonomous equations of 
the form: 

   = α(t) zz& 3 + β(t) z2 + γ z + δ     (A) 
where γ and δ are small, α(t) and β(t) are polynomials in t. it is one of the 
first order non-autonomous differential equations that have attracted the 
interest of the mathematicians during the last decades. Apart from the 
fact that (A) frequently appears in the applications, it is studied because 
many other systems can be transformed into this form, see for instance 
Al-wash and Lloyd [1987], Yasmin [2001] and Lloyd [1973]. 
By one side a large no of criteria for non-existence, existence, 
uniqueness of periodic solutions have been found [Neto 1980, Shi-
Songling 2001]. On the other side, after fixing some classes of (A) lower 
bounds for its number of periodic solutions is given. These bounds are 
obtained either by perturbing fine foci [Al-wash and Lloyd 1987, Lloyd 
1986].  Our results include some of the previous ones obtained by Al-
wash and Lloyd [1987]. Our technique is based on a nice theorem of 
these last authors, which we enunciate in the form of theorem 2.1 after 
some preliminary definitions. 
Remember that a given system of the form  
           dx/dt = λ x + y + p ( x , y ) 
          dy/dt = -x + λ y + q (x , y )        (1.1) 
where p and q are homogeneous polynomial of degree n, the origin is 
then a fine focus if λ = 0. Such systems can be transformed to non- 
autonomous equations: 
        dρ/ dθ = α(θ) ρ3 + β (θ) ρ2 - λ (n-1) ρ        (1.2) 
where   ρ = rn-1 (1 - rn-1 g(θ))-1                           (1.3) 
and   α(θ) = - (n-1) g(θ) { f(θ) + λ  g(θ) }  
 
        β (θ) = - (n-1) {f(θ) + 2λ g(θ) } + g'(θ)        (1.4) 
Thus α(θ) and β(θ) are homogenous polynomials in cosθ and sinθ of 
degree 2(n+1) and (n+1) respectively.  
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The relationship between (1.1) and (1.2) is explained by Al-wash and 
Lloyd [1987]. For completeness we give here few details. The 
transformation (1.3) is defined in 
 

D = {(r,θ); rn-1 g(θ) < 1}    (1.5) 
which is an open set containing the origin. It is clear that the limit cycles 
(an isolated closed orbits) of (1.1) correspond to positive 2π-periodic 
solutions of (1.2) with ρ small and positive.  Al-wash and Lloyd [1987] 
have given examples, which demonstrate that there is no upper bound for 
the number of periodic solutions of (1.2) unless the coefficients are 
suitably restricted. Thus the real question therefore is the maximum 
possible number of periodic solutions for various classes of coefficients, 
which is part of the list of problems presented in Paris by Hilbert [1902]. 
Therefore in this paper we consider different classes. In order to obtain 
good estimates of number of periodic solutions of any class of differential 
equation we use complexified form [Bautin 1954, Lloyd 1973]: 
 

z&  = α(t) z3 + β(t)z2 + γ(t)z    (1.6) 
where z is complex but t remains real and the coefficients α, β, γ are real 
valued functions. We consider the classes C2,4 and C4,3 to investigate the 
possible number of 2π periodic solutions where Cn1,n2 denotes the class of 
equation of the form (1.6) in which α is of degree n1 and β is of degree n2. 
These classes were investigated by Al-wash and Lloyd [1987], and 
Yasmin [2001] for different n1 and n2. Still it is an open question, what is 
an upper bound for the number of 2π -periodic solutions of such classes. 
Thus for each class we calculate the maximum possible multiplicity of the 
origin z = 0. We specify ω ε R and seek information about the number of 
solutions, which satisfy the periodic boundary condition 

z(0) = z(ω) 
We say such solutions periodic whether or not α, β, γ themselves 
periodic. We are particularly interested in the case when ω = 1 and α, β, γ 
are of form arising in Al-wash and Lloyd [1987], and Shi-Songling [1975]. 
The multiplicity of z = 0 as a solution of (1.6) is the multiplicity of z = 0, as 
a zero of the displacement function  

q : c → z(ω,0,c) – c 
To compute the multiplicity (which we call µ), we write  

z(t;0,c) = ∑ an(t) cn   
where 0 ≤ t ≤ ω and c in a neighborhood of 0, and substitute directly into 
the equation. This gives a recursive set of linear differential equations for 
an(t); the initial conditions are  

a1(0) = 1, aj(0) = 0 for j > 1 
 
It can be seen that 

a& 1(t) = a1(t) γ(t) 
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where   a1(t) = exp [ γ (s) ds ]. ∫
w

0

Thus,  µ > 1 iff [ γ (s) ds = 0    (1.7) ∫
w

0

Since we are interested in the case when z = 0 is a multiple solution, we 
shall assume that (1.7) holds. Using the transformation 

   ξ = z exp [- γ (s) ds] ∫
w

0

Then equation (1.6) becomes 
   = ξ& α̂ (t)  + (t)      (1.8) 3ξ β̂ 2ξ

where   α̂ (t) = α(t) exp [2 γ (s) ds]  ∫
w

0

and  (t) = β(t) exp [ γ (s) ds] β̂ ∫
w

0

We note that if the function α, β and γ are periodic, then so are α̂  and . 
Also if multiplicity of z = 0 as a periodic solution of (1.6) is µ > 1, then the 
multiplicity of z = 0 as a periodic solution of (1.8) is µ. We therefore 
suppose that γ(t) ≡ 0 that is λ = 0 in (1.6), and so we consider equations 
of the form 

β̂

  = α(t)zz& 3 + β(t)z2     (1.9) 
For this a1(t) ≡1 and for n > 1, functions an(t) are determined by the 
relation: 

a& n = α ∑
≥
=++
1,, kji
nkji

 aI aj ak + β ∑
≥
=+
1, ji
nji

 ai aj   (1.10) 

These equations can be solved recursively but their calculation is 
complicated involving integration by parts. Let ηi = a i(ω); then multiplicity 
µ of z = 0 is k if η1=1, η2 = … = ηk-1 = 0 but nk ≠ 0. These ηi are called 
focal values. The formulae for ak(t) and ηk for k ≤ 9 are given by Al-wash 
and Lloyd [1987], and Yasmin [2001]. We are presenting ηk for k ≤ 9 in 
the next section to calculate the focal values. For the calculation of these 
focal values we have used a computer package “DERIVE” a 
mathematical assistant to perform algebraic operations accurately. The 
calculations in this paper are verified by using "DERIVE". At each stage of 
calculation the degree of polynomial involved becomes higher and higher, 
so it cannot be solved manually. In proceeding sections, conditions for 
z=0 to be a center and periodic solution of classes C2,4 and C4,3 are 
presented. 
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CALCULATION OF MULTIPLICITY OF z = 0 
AND METHOD OF PERTURBATION 

Calculation of multiplicity involve definite integral of type ∫ α(t) β (t) dt. 
We use a bar over a function to denote its definite integral  

β (t) = β(t) dt. ∫
ω

o
 
THEOREM 2.1 
The solution z = 0 of (1.9) has multiplicity k where 2 ≤ k ≤ 9 if and only if  
ηi = 0 for 2 ≤ i ≤ k-1 and ηk ≠ 0 where ηk are given by: 

η2 = β ∫
ω

0

η3  = α ∫
ω

0

η4 = α∫
ω

0

β  

η5 = α∫
ω

0

β 2 

η6 = (α∫
ω

0

β 3
 – ½ 2α β) 

η7 = α∫
ω

0

β 4
 + 2 α α β 2 

η8 = α∫
ω

0

β 5
 + 3 α α β 3 + α β 2 αβ  - ½ 3α β 

ω

η9 = α∫
0

β 6
 – 5 α α β 4  - 2 3β  αβ + 20 2αβ  + 2 αβ   β 2α  

Having determined the multiplicity µ, the aim will be to construct 
equations with maximum possible number of distinct real periodic 
solutions. The idea is to make a sequence of perturbations of the 
coefficients, each of which causes one periodic solution to bifurcate out of 
the origin. The method used is as follows: 

We start with an equation of the form (1.9) for which µ = k (say). Let 
U′ be a neighborhood of the origin in the complex plane containing no 
periodic solutions other than z = 0. Then by theorem (2.4) of Al-wash 
and Lloyd [1987] the total number of periodic solutions with initial 
points in U is unchanged by sufficiently small perturbation of the 
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coefficients. If possible, we perturb the coefficients α, β and γ so that 
η2 = η3 = …. = nk-2 = 0 but nk-1 ≠ 0. Then there is a non-trivial periodic 
solution ψ(t), say, with ψ(0) ∈ U′, and the only periodic solutions in U′ 
are ψ and the zero solution. Since complex solutions occur in 
conjugate pairs, it follows that ψ is real. Now let W1 be a 
neighborhood of ψ and U1 be a neighborhood of 0 such that U1 ∪ W1 
⊂ U′ and U1 ∩  W1 = φ. The number of periodic solutions with initial 
points in each of U1 and W1 is preserved under sufficiently small 
perturbations of the coefficients. We then seek to perturb the 
coefficients further such that η2 = η3 = …. = ηk-3 = 0, but nk-2 ≠ 0. In this 
case µ = k – 2. Now a second real non-trivial periodic solution has 
initial point in U1; there remains a real periodic solution with initial 
point in W1. Thus we have two non-trivial real periodic solutions and 
the zero solution is of multiplicity k – 2. Continuing in this way we end 
up with an equation of the form (1.9) with µ = 2 and k – 2 distinct non-
trivial real periodic solutions. 

 
CONDITIONS FOR A CENTRE 

To find maximum possible value of µ for classes C2,4 and C4,3 of 
coefficients, we evaluate the quantities ηk = ak(ω) which are given in 
section 2, until a value K of k is found with  property that ηk = 0 for all k if   
η2 = η3 = …. = ηk+1 = 0. Then µmax is the smallest such K. In association 
with the method which we have described for calculating the ηk, we need 
conditions which are sufficient for z = 0 to be a centre. Only then we know 
that we need to calculate no more of the ηk. Now we will state here the 
conditions for z = 0 to be a centre [Al-wash 1987] because we will need 
them in the next section. 
 
THEOREM 3.1 
Suppose that there is a differentiable function σ(ω) = σ(0) and continuous 
function f and g defined on I = σ([0, ω)] such that 

α(t) = f(σ(t)) σ& , β(t) = g(σ(t)) σ&  
Then origin is a centre for equation  

z& = α(t)z3 + β(t)z2      
 
COROLLARY 3.2 
Suppose that  α or β is identically zero and the other has mean value 
zero, then origin is a centre.  
 

PERIODIC SOLUTIONS OF CLASS C2,4 AND C4,3 
In this section, we shall consider the classes C2,4 and C4,3 in which C2,4 
denote the class of equations of the form 

z&  = α(t)z3 + β(t)z2     (B) 
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where α(t) and β(t) are polynomial in t of degree 2 and 4 respectively and 
C4,3 denote the class of equation of the form (B) in which α(t) and β(t) are 
polynomial of degree 4 and 3 respectively. Al-wash and Lloyd [1987] 
proved that for class Ck,1:  

µmax (Ck,1) = 4 for k = 2, 3 
        = 5 for k = 4, 5 
Yasmin [2001] proved  

µmax (C1,k) = 4 for k = 2, 3 
        = 8 for k = 4, 5. 
 
THEOREM 4.1 
Let C2,4 denote the class of equations of the form:  

z&  = α(t)z3 + β(t)z2 
where α(t) is of degree 2 and β(t) is of degree 4.  
Then we have  µmax (C2,4) = 7. 
 
Proof 
Let   α(t) = a + c t2 

β(t) = d + e t + f t2 + h t4 
Then by theorem 2.1  

η2 = d + e/2 + f/3 + h/5    (i) 
and  η3 = a + e/3      (ii) 
Now multiplicity of the origin z = 0 is µ = 2 if η2 ≠ 0 and µ2 = 3 if η2 = 0 but 
η3 ≠ 0. If  

η2 = η3 = 0.  
Then from (i) and (ii) respectively, we have  

30
61015 hfed ++

−=      (iii) 

and  a = - c/3      (iv) 
Using (iii) and (iv), α(t) and β(t) become as 

α(t) = c(t2 – 1/3) 

β(t) = 
30

)145(3)123(5(2)12(15 −+−+− thtfte
 

Then we calculate η4  
η4 = c (e -h)/360     (v) 

If η4 = 0, then either c = 0 or e = h. If c = 0 then by equation (iv) a = 0. 
Hence α(t) ≡ 0 and also mean value of β(t) = 0, so by corollary (3.2) the 
origin is a centre. So we take c ≠ 0. Now if e = h, c ≠ 0, β(t) becomes 

β(t) = 
30

)145(3)123(5(2)12(15 −+−+− thtfth
 

and   α(t) = c(t2 – 1/3) 
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Then theorem 2.1 

η5 = 
81081000

)19081105( hfch +
 

If η5 = 0, as c ≠ 0 implies either h = 0  

or   f = - 
1105

h1908
      (vi) 

If h = 0, then it becomes C2,2. In this case µmax (C2,2) = 4. To have 
multiplicity of origin greater than 4, we suppose h ≠ 0 and we calculate η6  

η6 = 
00001218485268

)708383029700( 2hcch +
 

Now η6 = 0 gives  

  c = - 
83029700

7083 2h
     (vii) 

Using (vi) (viii) and theorem  (2.1) η7 becomes 

η7 = - 
8000000078272561553998765863

631896025045 2h
 

which is nonzero as h ≠ 0. 
Hence   µmax (C2,4) = 7. 
 
THEOREM 4.2 
In the equation  = α(t) zz& 3 + β(t)z2      (B) 

Let   α(t) = - 
249089100

))3)13((83029700)13(7083 4
2

1
22 ∈+−∈−− tth

 

and β(t) = 3h (2210 t4 – 3816 t2 + 2210 t - 275)               

+
6630

))2)12((3)13(2( 53
2

2 ∈+−∈+−∈ tt1105
 

with h ≠ 0. 
If , 1 ≤ i ≤ 5 are chosen to be non zero and in that order each ∈i∈ k is 
sufficiently small as compared with ∈k-1, then equation (B) has five non-
trivial real periodic solutions. 
 
Proof 
The coefficients are chosen so that the multiplicity of origin, µ is 7 if ∈ =0 
for 1 ≤ i ≤ 5. Choose ∈

i

1 ≠ 0 but ∈ = 0 for 2 ≤ i ≤ 5. Then it can be checked 
that η

i

2=η3=η4 =η5= 0 but η6 ≠ 0. Thus multiplicity of origin is reduced by 
one.  
Therefore one real solution bifurcates out of the origin. Next suppose that 
∈2 ≠ 0 but ∈3 = ∈4 = ∈5 = 0. We may check that η2 = η3 = η4 = 0 but η5 is 
a constant multiple of ∈2. So µ  = 5. If ∈2 is small enough, then there are 
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two non-trivial real periodic solutions continuing in this way, we have five 
non-trivial real periodic solutions. 
 
COROLLARY 4.3 
With α(t) and β(t) as in Theorem  (4.2) the equation  

z&  = α(t) z3 + β(t) z2 + γ z + δ    (C) 
has seven real periodic solutions if γ and δ are small. 
 
Proof 
If γ = 0 and δ = 0, µ = 0. Then (C) has five real periodic solutions. If γ ≠ 0 
but small enough, then µ = 1 and by the argument used in above theorem 
there are six distinct real periodic solutions z = 0 is another solution. So 
we have seven real periodic solutions. 
 
THEOREM 4.4 
Let C4,3 denote the class of equations of the form: 

z&  = α(t) z3 + β(t)z2    
in which α and β are of degree 4 and 3 respectively. 
Then   µmax (C4,3) = 5. 
 
Proof 
Let   α(t) = a + b(2t-1) + c(2t-1)2 + d(2t-1)3 + e(2t-1)4 
  β(t) = f + j(2t-1)3 
Then by theorem 2.1 
  η2 = f 
and   η3 = a + (5c + 3e)/15 
Now multiplicity of the origin is µ = 2 if η2 ≠ 0 and µ = 3 if η2 = 0 but η3 ≠ 0.  
If η2=η3 = 0. Then we have  

f = 0       (a) 
and   a = - (5e + 3e)/15     (b) 
and η4 becomes 

η4 = j(15c + 14e)/1575 
If η4 = 0, either j = 0 or  

c = - 
15
14e

. 

If j = 0. Then β(t) = 0, also mean value of α(t) = 0, so by corollary 3.2 
origin is a centre. Thus j ≠ 0. 
If  c = - 14e/15      (c) 
Then α(t) becomes  

α(t) = b(2t-1) + 
45

)12411418090(8)12(45 2343 +−+−+− ttttetd
 

Then by theorem 2.2 
η5 = 4 e j2/57915 
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If η5 = 0, as j ≠ 0 so e = 0. If e = 0 then by equation (c) c = 0.  
Thus α(t) and β(t) becomes as  

α(t) = b(2t -1) + d(2t - 1)3 

β(t) = j(2t - 1)3 
These can be written as  

α(t) = {(b + d(2t - 1)2 }(2t - 1) 
β(t) = j(2t - 1)2 (2t - 1) 

Let σ(t) = t2 - t such that σ (0) = σ (1). Then σ& (t) = 2t - 1 
Thus    α(t) = [b + d (4σ + 1)] σ&  
  β(t) = j(4σ + 1) σ&  
Therefore, α(t) = f (σ (t)) σ&  
  β(t) = g(σ (t)) σ&  
where   f(σ) = b + d (4σ + 1) and  g(σ) = j(4σ + 1) 
So by theorem 3.1 origin is a centre for the equation  

z&  = α(t) z3 + β(t)z2    
Thus e ≠ 0. 
Hence   µmax (C4,3) = 5. 
 
THEOREM 4.5 
In the equation  

  = α(t) zz& 3 + β(t) z2     (B) 
Let  
α(t) = d(2t-1) -

15
))12)(15)132152240120(2)12(155 2

2
1

2343 ∈+−∈−−−+−−−− tttttetdc  

β(t)= j(2t - 1)3 + ∈3) 
If ∈3 ; 1 ≤ i ≤ 3 are chosen to be non-zero and in that order such that each 
∈k is sufficiently small as compared with ∈k -1, then equation (B) has three 
non-trivial real periodic solutions. 
 
Proof 
The coefficients are chosen so that multiplicity of the origin, µ is 5 if ∈i = 0 
for 0 ≤ i ≤ 3.  Choose  ∈1 ≠ 0 but ∈i = 0 for 2 ≤ i ≤ 3 then it can be checked 
that η2 = η3 = 0 but η4 ≠ 0; thus the multiplicity of the origin is reduced by 
one. Hence µ = 4. Therefore one real solution can bifurcates out of the 
origin. Next with ∈2 = 0 but ∈3 ≠ 0, we have η2 = 0 but η3 is a constant 
multiple of ∈2; so µ = 3. If ∈2 is small enough there are two real non-trivial 
periodic solutions. Continuing in this way, we have three non-trivial real 
periodic solutions. 
 
COROLLARY 4.6 
With α(t) and β(t) as in theorem 4.5, the equation 
  = α(t)zz& 3 + β(t)z2 + γz + δ    (C) 
has five distinct real periodic solutions if γ and δ are small enough. 
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Proof 
If γ = 0, δ = 0, µ = 2 then µ = 0 and equation (C) has three real periodic 
solution. If γ is nonzero but small enough, then µ = 1 and by the argument 
used in the above theorem, there are four distinct real periodic solution;   
z = 0 is another solution. 
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