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Abstract: Posterior distribution is the workbench in Bayesian analysis. The 
posterior distribution for the parameters of the Rao-Kupper model for paired 
comparison data is derived using the (informative) Dirichlet-gamma prior 
distribution. In this study, an attempt is made to find analytical expression for the 
posterior (marginal) distributions of the parameters of the Rao-Kupper model. 
Five approximate analytical expressions for the marginal posterior distributions of 
the threshold parameter and three analytical expressions for posterior distribution 
of the treatment parameters are presented in this study. 
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INTRODUCTION 
Sometime it may be difficult for a panelist to rank or compare more than 
two objects or treatments (m>2) at the same time especially when 
differences between objects are small or the criteria are rather subtle 
(m=2). For this reason paired comparison data is sometime regarded as 
more reliable and can be obtained more readily from panelists. A detailed 
review of the literature concerning the methods/models of paired 
comparisons has been given by David [1988]. 
Consider a paired comparison trial with 'm' treatments or objects 

. There are 'm(m-1)/2' all possible pairs of 'm' treatments. 
Each pair ( , (

m21 T,...,T,T
T )T, ji mj,i1,ji ≤≤< ) is ranked rij  times independently. Let 

 be the 'true' ratings (or preferences) of 'm' treatments on a 
subjective continuum. A model can be based on the idea that when a 
panelist is confronted with treatment , she responds with an 
'unconscious' or 'latent' variable  (a latent variable is a quantity which 
either in practice or in principle, cannot be directly observed or 
measured). The assumed mechanism is that she prefers treatment  to 
treatment  if . Bradley and Terry [1952], and Bradley [1953] 
proposed a model of paired comparisons for the trial mentioned above. 
The Bradley-Terry model implies that the difference between two latent 
variables (
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jT

X

iT
iX

jX>
iT

i

j

X

i X− ) has a logistic (squared hyperbolic secant) density 

with location parameter (ln )jlni θ−θ . Let ijψ  denotes the probability 
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The Bradley-Terry model defined by (1) does not allow ties.  
 

THE RAO-KUPPER MODEL FOR PAIRED COMPARISONS 
Rao and Kupper [1967] proposed a modification of the Bradley-Terry 
model to allow for tied observations. They introduced a threshold 
parameter δ=lnλ and assumed that if the observed difference ( ) is 

less than δ then the panelist is unable to distinguish between  and  

and will declare a tie. Now the probability 

ji XX −

iT
δ>− )XX{( jiP | jθi,θ } that the 

treatment  is preferred to the treatment T  ( iiT j )j≠  when the treatments 

 and  are compared is denoted by jT ij.iψ  and is given by: 
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The probability that treatment  is preferred to treatment T  is denoted 

by  and may be obtained by swapping i with j in (2). The probability 

that treatments  and T  have no preference is denoted by  and is 
given by  
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The Rao-Kupper model is given by Eqs. (2) and (3). If λ=1 then the Rao-
Kupper model yields the Bradley-Terry model. 
The notations to describe the data and the likelihood function are: 

 = 1 or 0 according as treatment  is preferred to treatment T  or not 
in the k'th repetition of comparison. 

j

 = 1 or 0 according as treatment  is tied with treatment  or not. jT
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It is noted that: 1nnn ijk.jijk.iijk.o =++    and   n jik.iijk.i n= . 

∑= k ijk.iij.i nn = number of times treatment  is preferred to treatment T .  iT j

∑= k ijk.oij.o nn = number of times treatments  and  are tied.  iT jT

ijr  = number of times treatment  is compared with treatment T  and iT j

jiij.jij.iij.oij rnnnr =++= . 
The following notation is useful for further simplification of the likelihood, 

ijk.iijk.oijk nnn += , ijk.iijijk.jijk.ojik nrnnn −=+= , 

== ∑k ijkij nn number of times treatment T  is preferred to treatment T  

and number of times treatments T  and   are tied,   
i j

i jT

in = = total number of times treatment  is preferred to any other 

treatment and the number of times  and T  are tied. 
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Now we put a constraint on the treatment parameters of the model that 
they are positive and sum to unity, this condition ensures that the 
parameters are well defined i.e. identifiable. Hence, the likelihood function 
of the observed outcome x {where x represents the data } of 
the trial is:  
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where )!n!n!n(rK ij.jij.iij.oijij = ,  and λ>1, 

here λ is the threshold parameter and 

1),m,...,2,1i(,10
m
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m1,...,θθ  are the treatment 
parameters.  
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THE CHOICE OF PRIOR DENSITY 
One of the main differences between classical statistics and Bayesian 
statistics is that the latter can utilize the prior information in a formal way.  
The Dirichlet distribution is assumed to be a prior distribution for the 
treatment parameters m21 ,...,, θθθ  and for the threshold parameter λ the 
prior distribution is assumed to be independent of that for treatment 
parameters mθ21 ,...,,θθ  and to have a gamma distribution, so the prior 
distribution of the parameters m,...,21, θθθ  and λ has the following form: 
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where ),m,...,1i(ai =  b , b  are the hyperparameters and a . 1 2 0b,b, 21i >
 

THE POSTERIOR DISTRIBUTION FOR THE PARAMETERS 
OF THE MODEL 

The posterior distribution for the treatment parameters m21 ,...,, θθθ  and 
threshold parameter λ using the likelihood function (4) and the prior 
distribution (5) is: 
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AN ATTEMPT FOR CLOSED FORMS OF THE MARGINAL 

POSTERIOR DISTRIBUTIONS 
The (marginal) posterior densities of the threshold parameter λ and the 
treatment parameter  are derived and examined to find closed forms. iθ
 
(a) The marginal posterior density of the threshold parameter λ for the 
case of two treatments has the following form by using the constraint 

, and taking 121 =θ+θ θ−=θ⇒θ=θ 121 : 

( )∝λ xp 12.o12.o12 n1nb)1(b )1()1(e +λ−λ −+−λ− ∫ θ−+λθθ−λ+θ
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The integral in (7) is intractable; the following attempt is made to obtain 
the approximate analytical solution (closed form) for the integral of (7). 
 
APPROXIMATION (I)  
Let the integrand in (7) be denoted by )(f θ i.e.  

  
2112

212121

nn

1na1na

)}1({)}1({
)1()(f

θ−+λθθ−λ+θ
θ−θ

=θ
−+−+

,  0 ≤ θ ≤ 1.         (8) 

To draw different graphs, the hypothetical data given in following Table is 
considered and the values of the hyperparameters are assumed to be: 

 ,3a  ,3a 21 ==  b 1b  and  2 21 == . 
 
Table:  Hypothetical Data 

Pair 12.1n  12.2n  12.on  12n  21n  
1,2 10 30 01 11 31 

 
The quadrature method is applied for the evaluation of the integrals. The 
shape of )(f θ  has been examined at different values of λ (graph for λ=2 
is given in Fig. 1). The graph looks like the beta distribution.    
 
  )(f θ

 
θ 

Fig. 1: Integrand of Posterior (Marginal) Density i.e. )(f θ  
 
In the denominator of f )(θ , θ is replaced by (1-θ) in the first part of the 
product and (1-θ) by θ in second part, then the density of λ becomes: 
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It is found that for large value of either  or n  the density (9) becomes 
improper. So this approximation is not useful. 
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APPROXIMATION (II)  
Now we try to replace the denominator of )(f θ  by  

( ) )()( 1),(h
)()(

λλ βα

λλ θ−θ=βαθ . 

Then the density (7) is: 
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where B stands for a Beta function and values of α(λ) and β(λ) at  various 
values of λ and θ (e.g. λ=1.5, θ =0.2 and 0.8) are calculated by the 
following  equation: 
    ( ) ( ) ( ){ } ( ){ }θ−+λθ+θ−λ+θ≅θ−β+θ λλ 1lnn 1lnn1lnln 2112)()(α   (11) 
 

)(g θ           ( )θh  

      

Fig. 2 
Fig. 3 

                           θ                           θ 
Fig. 2: Logarithm of the denominator of )(f θ i.e. )(g θ . 
Fig. 3: Transformed denominator i.e.  h(θ ). 
 
p( )λ x                 p( )λ x   

        

Fig. 4 Fig. 5 

      λ         λ  
Fig. 4: Posterior (Marginal) density of λ .  Fig. 5: Approximate density of . λ
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The graphs of the right hand side {i.e. log of the denominator of } and 

left hand side {i.e. log of 

)(f θ
),(

)()( λλ βαθh } of (11) are given in Figs. 2 and 3 

respectively. In this approximation, the density (10) remains proper. The 
graphs of (7) and (9) are given in Figs. 4 and 5 respectively for 
comparison. It is noted that they are approximately equal. This 
approximation is encouraging and can be used for analysis. 
 
APPROXIMATION (III)  
Another approximation is considered by examining the graph for the log 
of denominator of  (Fig. 2). The graph indicates an exponential 
function. So the denominator of the 

)(f θ
)(f θ  is replaced by the exponential 

function  then the integrand becomes: θ−ue
)(f θ = ( ) ,1e 1na1nau 2211 −+−+θ− θ−θ    u is constant.  (12) 

Now the integral has a following closed form [Erdelyi et al. 1954]: 

( ) ( ) (∫ µ−+Φ=θθ−θ −−µθ−
1

0
211121

1c1c . ,0 ,cc ,0 ,c c ,cBd1e 21 )  (13) 

where 21221211 nac,nac +=+= . 
This approximation is not simple because the function Φ1 is complicated. 
 
APPROXIMATION (IV)  
Let us consider λ = 1+φ where φ is small with high probability. Now the 
integral has a closed form as a Beta function but is suitable only for the 
small values of φ i.e. φ<0.1. The closed form of the integral of (7) is: 
 ( ) ( ) ( ) ....1y,xBny,1xBny,xB 1221 ++φ−+φ−    (14) 
where 121 nax += , 212 nay +=  and B stands for a Beta function as: 
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APPROXIMATION (V)  
Other approximations like Lindley [1980] and Tierney-Kadane [1986] 
approximation can be employed to obtain the marginal posterior density 
of λ numerically because the modes of the parameters involved in both 
the approximations are not available in closed forms. Therefore, these 
approximations need to be done numerically. 

(b) As  so there are 'm-1' effective treatment parameters, 

now the (marginal) posterior density of the treatment parameter  has 
the following form,  
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Similarly the marginal posterior density of iθ (i=2,...,m-1) can be written 
from the (joint) posterior density (6). For the case of number of treatments 
m=2, taking θ = 1θ  the marginal posterior density of the parameter θ can 
easily be derived from (16) in the following form: 
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     0 1≤ ≤θ . (17) 
The problem in obtaining an analytical expression of the integral in (17) is 
the same as in the integral of the marginal posterior density of λ though 
here the situation is more complicated. The following attempts are made 
for the approximate analytical solution of the integral in (17). 
 
APPROXIMATION (I)  
The shape of true integrand {say f(λ)} in (17) is examined (graph is given 
in Fig. 6), which is near to the Beta distribution. We can approximate it 
with a Beta distribution. The graph of the marginal posterior density of θ 
(17) is given in Fig. 7. 
         )(f λ )( xθp  

          

Fig. 6 Fig. 7 

                              λ            θ 
Fig. 6: Integrand of posterior (Marginal) density of θ  i.e. f )(λ .   

Fig. 7: Posterior (Marginal) density of θ  i.e. )( xθp . 
 
APPROXIMATION (II)  
The evaluation of the integral at different values of θ seems to be 
constant. So the integral can be absorbed in the constant of 
proportionality. Now the posterior density of θ can be written as: 
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                            ( ) ( ) ,1 1na1na 2211 −+−+ θ−θ∝θxp                              (18) 
which is a kernel of the beta distribution. 
 
APPROXIMATION (III)  
The lower bound and the upper bound can be fixed on the integral by 
neglecting some terms from the denominator of the integrand. In this way, 
the approximate analytical solution is in the form of a beta function. 
 
References 
Berger, J.O. (1985) “Statistical Decision Theory and Bayesian Analysis”, 

2nd ed., Springer-Verlag, New York. 
Bradley, R.A. (1953) “Some statistical methods in taste testing and quality 

evaluation”, Biometrics, 9, 22-38. 
Bradley, R.A. and Terry, M.B. (1952) “Rank analysis of incomplete block 

design: I the method of paired comparisons”, Biometrika, 39, 324-345. 
David, H.A. (1988) “The Method of Paired Comparisons”, 2nd ed., Charles 

Griffin and Company, London. 
Erdelyi, A. et al. (1954) “Tables of Integrals Transforms”, Vol. I and II, 

McGraw-Hill, New York. 
Lindley, D.V. (1980) “Approximate Bayesian methods, In: J.M. Bernardo, 

M.H. De Groot, D.V. Lindley and A.M.F. Smith (Eds.), Bayesian 
Statistics, University Press, Valencia, Spain, pp. 223-245. 

Rao, P.V. and Kupper, L.L. (1967) “Ties in paired–comparison 
experiments: a generalization of the Bradley-Terry model”, JASA, 62, 
194-204.  

Terry, L. and Kadane, J.B. (1986) "Accurate approximation for posterior 
moments and marginal densities”, JASA, 87, 82-86.  

 
 
 
 
 
 
 
 
 
 
 
 


	ON THE POSTERIOR DISTRIBUTION OF PARAMETERS FOR THE RAO-KUPPER MODEL
	INTRODUCTION
	
	
	
	
	
	THE POSTERIOR DISTRIBUTION FOR THE PARAMETERS
	OF THE MODEL
	References








