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Abstract: In this research the question of dimension reducing procedures are of 
interest, comprises canonical correlation, which investigates the correlation 
between linear combinations of variables, and principal component analysis that 
reduces the set of measurement characteristics to fewer components. Factor 
analysis performs the same reduction but assuming that the observations have 
an underlying structure. The auxiliary of principal component is taken for a more 
parsimonious data representation. The deficiencies of principal component 
analysis are overcome. Rotation of factors application is discussed. 
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INTRODUCTION 
The central idea of principal component analysis (PCA) is to reduce the 
dimensionality of a data set, which consists of a large number of 
interrelated variables, while retaining as much as possible of the variation 
present in the data set. This is achieved by transforming to a new set of 
variables, the principal components (PCs), which are uncorrelated, and 
which are ordered so that the first few retain most of the variation present 
in all of the original variables. Data from multivariate population involve 
repeated observations on p possibly correlated random variables. 
Sometimes when p is large, it is however natural that these random 
variables, although related to each other, may not all contain the same 
amount of information, and in fact some random variables may be 
completely redundant. It is obvious to seek ways of rearranging or 
summarizing the data so that with minimum loss of information as 
possible, the dimension of the problem is reduced. This task is simplified 
if the transformations are made in such a way that these p linear functions 
become uncorrelated (independent, if the original p random variables are 
normally distributed), for then we could discard from study function 
reflecting less variability and consider only those functions that have 
higher variances. 
Principal component analysis does not only mean or always work in the 
sense, the reduction from large number of original variables into small 
number of transformed variables. If the original variables are uncorrelated 
then PCA does absolutely nothing. Highly correlated variables surrender 
best results. And it is quite conceivable that 20 or 30 original variables 
can be adequately represented by two or three principal components. 
Nevertheless, it will be also of worth to know that there is a good deal of 
redundancy in the original variables, with most of them measuring same 
things.  
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Principal components analysis was essentially developed by Hoteling 
[1933] after its origination, Pearson [1901] who studied the problem for 
the nonstochastic variables. For details and various applications see Rao 
[1964]. 
 

DEFINITION AND DERIVATION OF PRINCIPAL COMPONENTS 
Suppose that X is a vector of p random variables and the structure of the 
covariances or correlations between the p variables are of interest. 
Unless p is small, or the structure is very simple, it will often not be very 
helpful to simply look at the p variances and all of the 1

2 p(p-1) 
correlations or covariances. An alternative approach is to look for a few 
(<p) derived variables, which preserve most of the information given by 
these variances and correlations or covariances. 
Although PCA does not ignore covariances and correlations, it 
concentrates on variances. The first step is to look for a linear function 

 of the elements of X which has maximum variances, where α is a 
vector of p constants α α and t denotes transpose, so that  
α 1
t X

α11 12 1, , .... , ,p
α α α α1 11 1 12 2 1
t

p pX x x= + + +....... x  

             (2.1) =
=
∏
j i

P

ij jxα

Next, look for a linear function, uncorrelated with , which has 
maximum variance, and so on, so that at the kth stage a linear function 

 is found which has maximum variance subject to being 
uncorrelated with α α  The kth derived 

variable, , is the kth PC. Upto p PCs could be found but it is 
hoped, in general, that most of the variation in X will be accounted by m 
PCs, where m<p. 

α 2
t X

X
α 1
t X

α1 2 1
t t

r
tX X, ........... .−

α k
t X

 
PRINCIPAL COMPONENTS BASED ON POPULATION 

We shall assume that the vector X = (X1 ,….., Xp)t are measured in the 
same or comparable units. And if the sample size is large so that the final 
results of a PCA will be meaningful, new standardized variable should by 
formed. The relevant covariance matrix will then be a sample correlation 
matrix, and now all the components will be measured in the same units. 
Let X be a p-component vector with covariance matrix . Since is a 
symmetric and positive definite matrix. Let α denote a p-variate vector of 
unknown weights for each of the components of X, and let Z

∑ ∑

1 denote the 
scalar 
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Z Xt
1 = α  

                  (3.1) =
=
Π
k

p

k kx1
α

Then there exists an orthogonal matrix ( )α= 1 ....... pα α

)

,  
such that  

α α t
pI=
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Then cov(Z)=α α , and components Z  
are uncorrelated. These p-variate uncorrelated linear function 
components are the principal components. 

λ
t D∑ = XZX t

pp
t αα == ,........,11

Now maximize var (Z1). Since , var . XZ t
11 α= ( )Z t

1 = ∑α α

  ma      (3.4) (x
α

α αt ∑

It is required to fulfill the condition 

  α     2
1
αα
p

t Π=

  α       (3.5) 1=αt

If A = At , and denote the latent roots of A λ j

( ) (min min
i j p j

t

t i j p j
X AX
X X≤ ≤ ≤ ≤

≤ ≤λ )λ

)

    (3.6) 

there exists an orthogonal matrix  such that α
        (3.7) A D t= α αλ

where = diag (  are latent roots of A and if the latent roots 
are distinct.  

Dλ λ λ1......, p
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The representation with the elements of are arranged to that 
 is unique. For proof of the main results, see 

Mirsky [1955]. 

Dλ

λ 1 > , ............. , pλ>

)

The algebraic result from equation (3.6) shows that maximizing the var(Zi) 
is the largest latent root of . Using Lagrangian ∑
      (3.8) (W t t= ∑ − −α α θ α α 1
where  is a Lagrangian multiplier, and maximize W using the constraint. 
Differentiating W with respect to α , and equating to zero yields  

θ

 022 =−∑= αθα
α∂

∂W
     (3.9) 

       (3.10) ( )∑ − =θ αI 0
since α ≠ , there can be a solution only if  0
 ∑ − =θ I 0        (3.11) 

From equation (3.10) , . Pre-multiplication by α gives ∑ =α θ α t

α t ∑ =α θ α αt  
= θ (= var Z1)

X

      (3.12) 

To maximize  take θ  as large as possible. The solutions to 
equation (3.10) and equation (3.11) are 

( )var Z1

( )α θ1 1, ;  

       (3.13) Z t
1 1= α

The result is summarized in the following theorem. 
 
THEOREM 
Suppose for , , and ( )X p × 1 ( )E X = φ

( )var ; .............X let p= ∑ ≥ ≥ ≥ ≥θ θ θ1 2 0
∑ α1 ,.............., p

∑ XZ t
11 α=

α α= 1 1, Z

 denotes the latent roots of 
, and let α denote the corresponding normalized latent 

vectors of ; let , and constraint α  so that α α . Then, if 

 is called the first principal component of X. and . 

t = 1

var Z( )1 1=θ

Define , where now not only α α , but in addition, it is 
required Z

XZ t
22 α=

α 2

t = 1
2 be orthogonal to Z1. It is straightforward given by using two 

Lagrangian multipliers for the two constraints that is maximized 
for . 

( )var Z2

α =



 
 
 
 
 
 
 

THE USE OF CANONICAL PRINCIPLE AND FACTORS ANALYSIS 91 

Nevertheless, define and require for α α  be 
orthogonal to both  and  moreover generate a set of p orthogonal 
axes that are obtained by applying the normalized latent vectors of . 

,33 XZ tα=
Z2

t Z= 1 3,

∑
Z1

 
EXAMPLE ON PRINCIPAL COMPONENTS 
A work for determining whether the process was under ‘control’ was done 
by two statisticians [Jackson and Morris 1957]. There are many variables 
involved and especially each of them is checked simultaneously to sure 
whether that variable is still under control. To measure the quality 9 
variables were included and basically these variables were correlated. 
Computations on the covariance matrix were taken up in an attempt to 
reduce the dimension of the problem so that only a few variables need to 
be examined for control. 
 
Table 4.1: Variance – Covariance Matrix 

X1 X2 X3 X4 X5 X6 X7 X8 X9 
177         
179 419        
95 245 302       
96 131 60 158      
53 181 109 102 137     
32 127 142 42 96 128    
-7 -2 4 4 4 2 34   
-4 1 4 3 5 2 31 39  
-3 4 11 2 6 8 33 39 48 

 
Table 4.2: Eigen values Based on Table 4.1 

Component Eigen value Cumulative proportion of total variance 
1 878.519228 0.609237 
2 196.095890 0.745225 
3 128.643106 0.834437 
4 103.430205 0.906164 
5 81.261078 0.962517 
6 37.848834 0.988764 
7 6.976383 0.993602 
8 5.706471 0.997560 
9 3.518806 1.000000 

 
Table 4.3: Characteristic Vectors of the Var-Covariance Matrix shown in Table 4.1 

V a r i a b l e s Components X1 X2 X3 X4 X5 X6 X7 X8 X9 
I 0.305 0.654 0.482 0.261 0.323 0.271 0.002 0.006 0.014 
II -0.485 -0.150 0.587 -0.491 -0.038 0.376 0.057 0.053 0.088 
III -0.412 -0.182 -0.235 0.457 0.495 0.268 0.256 0.266 0.282 

 
Table 4.4: Correlation between Components and Variables 

V a r i a b l e s Components X1 X2 X3 X4 X5 X6 X7 X8 X9 
I 0.679 0.946 0.824 0.616 0.819 0.710 0.012 0.028 0.062 
II -0.511 -0.103 0.473 -0.517 -0.045 0.462 0.137 0.120 0.179 
III -0.351 -0.101 -0.154 0.412 0.480 0.269 0.497 0.483 0.462 
r2 0.845 0.916 0.928 0.849 0.903 0.791 0.266 0.249 0.249 
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GENERAL FACTOR MODEL 
Suppose we wish to examine the aptitude of graduates going for 
admission in Department of Statistics, B.Z. University Multan. We may 
give them a test of 30 questions, yet may fall into few categories, such as 
reading comprehension, mathematical approach, and general knowledge 
etc. These categories are called factors. If there are only three factors, 
then the score on the ith question may be modeled in the form  
      Y F       i = 1, . . . . . 30 ;   j = 1, 2,3 F Fi i i i i= + + + +θ λ λ λ1 1 2 2 3 3 ei

)

F e

e

)

≤ ;

)
)ψ

)+

) Λ

More generally, if there are k factors and p score  in the test, then 
we can write 

(p k≥

     (5.1) Yi i
j

k

ij i i= +∏ +
=

θ λ
1

where the parameter λ , relating the ith variable with the jth factor, is 
called a factor loading. 

ij

In the matrix form equation (5.1) reduces to 
        
 (5.2) 

Y F= + ∧ +θ

where Y is a vector of  is a matrix of coefficient 

parameter with order and . 

( ) ( Λ=× ,,........,,1 1
t

pp θθθ

( ) ( )tkFFFkp ,..........,, 1=× ( )e e ep
t

= 1 ,..........,
Each element of Y may be thought of as having been generated by a 
linear combination of orthogonal, unobservable factors upon which some 
distribution term has been superimposed. The general factor model 
restrains the following assumptions: 
      (5.3) ( ) ( )W F N k p= 0 1, ,
  W e       (5.4) ( ) (N= 0,ψ

    where    ψ ψ   e and F are independent;  (= diag p1 , ........

          (5.5) Λ Λt A k kψ − = ×1 :
                    . ( )kdiag ΑΑ= ........,1
        where    Α1 > >........ .Ak
 
MAXIMUM LIKELIHOOD ESTIMATES 
The original derivations of maximum likelihood estimates (MLE) of  and 

are given by Lawley [1940] and Lawley and Maxwell [1970]. We derive 
the estimators as solution of these equations. 

Λ
ψ

      (6.1) (diag S diag t= Λ Λ ψ
and 
      (6.2) (Λ Λ Λ= +

−
S t ψ

1
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The method of MLE requires N > P. If , then one can estimate the 
factor loadings by such method as principal factor analysis. For detail of 
solution of above equation (6.1) and (6.2) [Joreskog and Von Thillo 1971]. 
It should be noted that adding the same constant to each variable has no 
effect on the covariance matrix. Similarly, if any variable is multiplied by a 
constant, then the factor loadings of the variable are multiplied by that 
constant. However in short, we shall assume that all variables are 
standardized to have 0 mean and variance 1. Now equation (5.2) 
becomes  

N P≤

        (6.3) Y F∗ = +Λ e

Λ

λ

)

Hence equation (6.1) can be written as 

       (6.4) ∏ + =
=j

k

ij i
1

2 1λ ψ

and equation (6.2) remains 
  ( )Λ Λ Λ= +

−
S t ψ

1

where S is the simple covariance matrix of the standardized variables or 
the correlation matrix of the original variables. 
 

PRINCIPAL FACTOR ANALYSIS 
The standardization of equation (5.2) will result in equation (6.3). 
Furthermore, equation (6.1) deduces to  

  ∏ + =
=j

k

ij i
1

2 1λ ψ

or equivalently, 

       (7.1) ψ i
j

k

ij= −∏
=

1
1

2

where i = 1, . . . . . . , p. If these residual variances are known, then by 
performing a principal component analysis on ( , we may obtain an 
estimate of Λ . We can then estimate ψ from equation (7.1). The 
process is however iterated until the final solution is achieved. Details are 
given in Kaiser and Rice [1974]. 

S − ψ

i

 
SELECTING THE NUMBER OF FACTORS 
The model (5.2) may be tested by means of involving a sequence of 
likelihood ratio test for testing the number of factors in a factor model. We 
test the hypothesis 
   against     H t

o :∑ = +Λ Λ ψ H t
1 :∑ ≠ +Λ Λ ψ

The likelihood ratio tests reject Ho if  λ =
∑

S
N

N

2

2$
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Asymptotic theory gives the distribution of ( -2 In ) as Chi-Square with 
g degree of freedom, where 

λ

 ( ) ( )[ ]g p k p k= − − +
1
2

2  

Bartlett [1954] proposed the approximation  

( ) ( )[ ]− − + −n p k2 5 6 2 3  In S g| |∑








 =

∧
χ 2  

Hence the hypothesis is rejected if . χ χ αg g
2 2≥ .

 
ROTATION PROBLEM 
After the determination of provisional factor loadings, it can be observed 
that they are not unique. If F1, . . . Fk are provisional factors and the initial 
selection of the factor loading  is completed, the next step is to rotate 
the factors. Thus the provisional factors are transformed into new factors 
that are easier to interpret. That is  

Λ

        (9.1) (F N I~ ,0 )
)

)I

e

+ e

F

e
e

+

Premultiplication of orthogonal matrix Γ  equation (9.1) deduces to (p p×
       (9.2) (F F N∗ = Γ ~ ,0
Hence equation (6.3) can be written as  
  Y F∗ = +Λ
       = +Λ Γ Γt F e
            (9.3) = ∗Λ Γ t F
The rotation of factors will result in the postmultiplication of the factor 
loading by an orthogonal matrix, If the condition of independent factors is 
relaxed, we may premultiply our factors by an arbitrary matrix B. 
        (9.4) F B∗∗ =
Hence equation (6.3) becomes 
  Y F  ∗ = +Λ
       = +−Λ B BF1

            (9.5) = − ∗∗Λ B F e1

where . ( )F N BBt∗∗ ~ ,0
 
VARIMAX ROTATION 
The most common of the orthogonal rotation methods is varimax rotation. 
It is based on the assumption that the interpretability of jth factor can be 
measured by the variance of the square of factor loadings, which is 
maximized. For detail see Maxwell and Lawley [1971].   
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Let  

      (10.1) d jj
i

p

ij=∏ =
=1

21 1( ,...., )k

)

)

)

Then the following expression is maximized 

       (10.2) (∏ ∏ −
= =

−

j

k

i

p

ij jp d
1 1

2 1 2
1

Such procedure attempts to give the values either close to zero or close 
to unity. This approach was first proposed by H.F. Kaiser. Later he 
modified it by normalization to improve his results [Kaiser 1958]. Despite 
a lot of other methods, varimax is suggested as standard approach. 
 
QUARTIMAX ROTATION 
There are several methods for choosing the final factor loading. Nauhous 
and Wrigley [1954] had shown that if the variables are to be treated as 
few as possible, then this method is used. As its name suggests, the 
minimizing of equation (10.1) is to maximize the sum of fourth powers of 

. The cross products of the factor loadings L=1  are also minimized. If 
 are the estimated factor loadings, then maximization will take place on 

1ij
1ij

ij

       (11.1) (∏ ∏
≤ < ≤ =1 1

1 1
e f k i

p

ie if

L Lt remains unchanged if any orthogonal rotation on L is performed. 
Under orthogonal transformation the diagonal term L Lt are invariant. It is 
therefore 

 Constant      (11.2) ∏ ∏





=
= =j

k

i

p

ij
1 1

2
2

1

Since, equation (11.1) is equivalent to  

(∏ ∏ + ∏ ∏
= = ≤ ≤ =j

k

i

p

ij
e f k i

p

ie if
1 1

4

1 1

2
1 2 1 1     (11.3) 

Hence, following expression is maximized. 

        (11.4) ∏ ∏
= =j

k

i

p

ij
1 1

41

 
EXAMPLE OF FACTOR ANALYSIS 
The data for this example is taken from Euromonitor [1979], which shows 
the percentage of the labour force in nine different types of industry 
groups in 26 European countries. Where, AGR = agriculture, MIN = 
mining, MAN = manufacturing, PS = power supplies, CON = construction, 
SER = service industries, FIN = finance, SPS = social and personal 
services, TC = transport and communications. The data can be visualized 
in Table 12.1. 
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Table 12.1: Percentage of People Employed in Various Industries. 

Country AGR MIN MAN PS CON SER FIN SPS TC 

Belgium 3.3 0.9 27.6 0.9 8.2 19.1 6.2 26.6 7.2 
Denmark 9.2 0.1 21.8 0.6 8.3 14.6 6.5 32.2 7.1 
France 10.8 0.8 27.5 0.9 8.9 16.8 6.0 22.6 5.7 
W. Germany 6.7 1.3 35.8 0.9 7.3 14.4 5.0 22.3 6.1 
Ireland 23.2 1.0 20.7 1.3 7.5 16.8 2.8 20.8 6.1 
Italy 15.9 0.6 27.6 0.5 10.0 18.1 1.6 20.1 5.7 
Luxemburg 7.7 3.1 30.8 0.8 9.2 18.5 4.6 19.2 6.2 
Netherland 6.3 0.1 22.5 1.0 9.9 18.0 6.8 28.5 6.8 
U.K. 2.7 1.4 30.2 1.4 6.9 16.9 5.7 28.3 6.4 
Austria 12.7 1.1 30.2 1.4 9.0 16.8 4.9 16.8 7.0 
Finland 13.0 0.4 25.9 1.3 7.4 14.7 5.5 24.3 7.6 
Greece 41.4 0.6 17.6 0.6 8.1 11.5 2.4 11.0 6.7 
Norway 9.0 0.5 22.4 0 .8 8.6 16.9 4.7 27.6 9.4 
Portugal 27.8 0.3 24.5 0.6 8.4 13.3 2.7 16.7 5.7 
Spain 22.9 0.8 28.5 0.7 11.5 9.7 8.5 11.8 5.5 
Sweden 6.1 0.4 25.9 0.8 7.2 14.4 6.0 32.4 6.8 
Switzerland 7.7 0.2 37.8 0.8 9.5 17.5 5.3 15.4 5.7 
Turkey 66.8 0.7 7.9 0.1 2.8 5.2 1.1 11.9 3.2 
Bulgaria 23.6 1.9 32.3 0.6 7.9 8.0 0.7 18.2 6.7 
Czechoslovakia 16.5 2.9 35.5 1.2 8.7 9.2 0.9 17.9 7.0 
E. Germany 4.2 2.9 41.2 1.3 7.6 11.2 1.2 22.1 8.4 
Hungary 21.7 3.1 29.6 1.9 8.2 9.4 0.9 17.2 8.0 
Poland 31.1 2.5 25.7 0.9 8.4 7.5 0.9 16.1 6.9 
Romania 34.7 2.1 30.1 0.6 8.7 5.9 1.3 11.7 5.0 
U.S.S R 23.7 1.4 25.8 0.6 9.2 6.1 0.5 23.6 9.3 
Yugoslavia 48.7 1.5 16.8 1.1 4.9 6.4 11.3 5.3 4.0 
 
Table 12.2: Correlation Matrix in Lower Diagonal Form Calculated from Table 12.1. 

AGR MIN MAN PS CON SER FIN SPS TC 
1.000         
0.036 1.000        
-0.671 0.445 1.000       
-0.400 0.406 0.385 1.000      
-0.538 -0.026 0.495 0.060 1.000     
-0.737 -0.397 0.204 0.202 0.356 1.000    
-0.220 -0.443 -0.156 0.110 0.016 0.366 1.000   
-0.747 -0.281 0.154 0.132 0.158 0.572 0.108 1.000  
-0.565 -0.157 0.351 0.375 0.388 0.188 -0.246 0.568 1.000 

 
Table 12.3: Eigen values  and Vectors for the Correlation Matrix  in Table 12.2. 

Eigenvector coefficients Eigen 
Values Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 
3.487 0.524 0.001 -0.348 -0.256 -0.325 -0.379 -0.074 -0.387 -0.367 
2.130 0.054 0.618 0.355 0.261 0.051 -0.350 -0.454 -0.222 0.203 
1.099 -0.049 0.201 0.151 0.561 -0.153 0.115 0.587 -0.312 -0.378 
0.995 0.029 0.064 -0.346 0.393 -0.668 -0.050 -0.052 0.412 0.314 
0.543 0.213 -0.164 -0.385 0.295 0.472 -0.283 0.280 -0.220 0.513 
0.383 -0.153 0.101 0.289 -0.357 -0.130 -0.615 0.526 0.263 0.124 
0.226 0.021 -0.726 0.479 0.256 -0.211 0.229 -0.188 -0.191 0.068 
0.137 0.008 0.088 0.126 -0.341 0.356 0.388 0.174 -0.506 0.545 

0 -0.806 -0.049 -0.366 0.019 -0.083 -0.238 -0.145 -0.351 -0.072 
  
The data of Table 12.1 is isolated with similar employment distribution in 
different European countries and is generally aiding the comprehension of 
the relationship between the countries. The correlation matrix for the 9 
variable composed on percentages of employment in European countries 
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is given in Table 12.2. For the purpose of factor analysis based on 
principal factor analysis, the eigen values and eigenvectors are computed 
and are shown in Table 12.3. 
There are three eigenvalues greater than unity so the “rule of thumb” 
proposes that three factors should be carried out. Nevertheless, the fourth 
eigenvalue is almost equal to unit, therefore we suggest the FA with four 
factors. 
The eigenvectors in Table 12.3 gives the coefficients , and these are 
changed into factor loadings. The factor model will be as follows: 

λ ij

Y F F F
Y F F F

Y F F F

1 1 2 3

2 1 2 3

9 1 2 3

0 98 0 08 0 05 0 03
0 00 0 90 0 21 0 06

0 69 0 30 0 39 0 31

= + − +
= + − +

= − + − +

. . . .
. . . .

. . . .
M

F
F

F

4

4

4

F
F

F

4

4

4

Y
Y
Y
Y

9

9

9

9

 

After varimax rotation Kaiser normalization was applied. Now the model 
deduced to  

Y F F F
Y F F F

Y F F F

1 1 2 3

2 1 2 3

9 1 2 3

0 68 0 27 0 31 057
0 22 0 70 055 0 31

0 77 0 23 0 33 0 23

= + − +
= + − +

= − + − −

. . . .
. . . .

. . . .
M

 

We are now in a position to declare the final results for computing factor 
score. 

$ . . ........... .
$ . . ........... .
$ . . ........... .
$ . . ........... .

F Y Y
F Y Y
F Y Y
F Y Y

1 1 2

2 1 2

3 1 2

4 1 2

0176 0127 0 430
0 082 0 402 0 014
0122 0 203 0 304
0175 0 031 0 088

= + + −

= − + + +

= − + + −

= − + +

 

 
CONCLUSIONS 

We observe that FA model is identical with a special case of latent 
structure. There are infinite number of latent classes that are supposed to 
measure the relationship among the variables. In latent structure analysis, 
a problem may allow probabilities to be presented in terms of polynomial 
in the continuous variable. The polynomial may be taken in linear from in 
each latent variable. Alternatively, if the latent structure is linear in many 
continuous allowable variables, the model is the FA model. The FA model 
depends heavily on multivariate normality using maximum likelihood 
estimation, where the structure became complicated one, while 
estimating the parameters. We stress mainly on PCA to find initial factors 
and then FA may be taken up. In this way, the major portion of the 
calculation (the finding of eigen values and eigenvectors from the 
correlation matrix) is done by computer using one of the standard 
statistical packages. One demerit that stands against FA is that it is not as 
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objective as most statistical methods. Many statisticians are somewhat 
doubted about its value. Chatfields and Collins [1980] concluded that FA 
should not be used in most situations.  
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