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Abstract:  The subject of investigation in this paper is the multiplication of Hall-
Littlewood symmetric functions. The main tool is to find the particular formula for 
the coefficient υ

λ ),1(, rrf − (t) in the product of two HL-functions. 
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INTRODUCTION 
In this paper we shall discuss the multiplication of Hall-Littlewood 
functions. For this purpose we need to define the following concepts. 
Let λ and µ be partitions of n, such that µi ≤ λi (i = 1,…,n). If the diagram 

[Macdonald 1995] of λ contains the diagram of µ. Then the skew diagram 
is the set theoretic difference θ = λ - µ. The conjugate of the skew 
diagram  

[θ ] = [λ - µ] is [θ ′ ] = [λ′  - µ′ ]  
Let  θ i = λi - µi, iθ ′  = iλ′  - iµ′  
and  |θ | = |λ| - |µ|, 
a horizontal strip is a skew diagram with r squares which has at most one 
square in each column. Therefore for a horizontal strip 

iθ ′  = iλ′  - iµ′  = 0 or 1 for each i ≥ 1. 

Let Pλ = Pλ(x; t) and Qλ = Qλ(x; t) be Hall-Littlewood P and Q functions 
[Sultana 2001] respectively, such that 

Qλ = bλ(t) Pλ     (1.1) 
where   bλ(t) = ∏

≥1i
)(λφ

im
(t), mi(λ) is multiplicity of i in λ.  
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Then there is another function qr(x;t) given by 

   qr(x;t)   = Qr(x; t)    (1.2) 
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Special cases of Qλ are S-functions when t = 0 and another class of 
symmetric functions, called Q-functions, when t = -1. 
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Rule for evaluating the product of two Schure-functions [Schur 1911] 
known as Littlewood-Richardson rule, was first stated but not proved by 
Littlewood and Richardson [1934]. The first proof of this rule is due to Las 
coux and Schutzenberger [1978] and Thomas [1974]. The method for the 
multiplication of Q-functions has been discussed by Morris [1962] which is 
similar to the method given by Murnaghan [1938]. 
 

THE PRODUCT OF TWO HALL-LITTLEWOOD FUNCTIONS 
Macdonald [1995] has shown that the coefficient υ

λµf (t) occurs in the 

product of  two HL-functions are related to the Hall polynomials υ
λµg . By 

using the Hall Algebra and horizontal strip, he has proved the following 
results. 
 
Theorem   
If µ is a partition of n and Pµ is HL-P functions on the partition µ, then 

PµP m1
= Σ F λ

µ m1 (t) Pλ. 

where  

   F λ
µ m1

(t) = 
)()(
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tVtV
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iririm −∏
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And 
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Theorem 
If λ ⊃ µ and θ  = λ - µ is horizontal strip then 

PµPr = ∑
λ

F λ
µr (t) Pλ(t) 

where 
F λ

µr (t) = (1 - t)-1 [∏
∈Ii

(1 - t )(λim ] 

where I is a set of integers i such that  

iθ ′  = 1 and 1+′iθ  = 0 and mi(λ) is multiplicity of i in λ.  

and F λ
µr (t) = 0, otherwise. 

 
Theorem 
If λ ⊃ µ and θ  = λ - µ is a horizontal strip, then 

Qµqr = ∑
λ

f λµr (t) Qλ 

where 
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f λµr (t) = ∑
λ

 
)(
)(
tb
tb

λ

µ  ∏
∈Ii

(1 - t )(λim ). 

Proof  
By using the above Theorem and the definitions of Qλ and qr given in 
(1.1) and (1.2) we get the required result. 
 

EXPLICIT FORMULA FOR ν
λ )1,1( −rf (t) 

Morris [1963] has given direct method for evaluating the product of two 
functions Qλ(x; t) and Qν(x; t).  
That is, if we let 

QλQµ = Σ υ
λµf (t) Qν 

It was shown how to determine the coefficient υ
λµf (t). His method 

depends on the evaluation of the product 
Qλ(x; t) qr(x; t) = Σ υ

λµf (t) Qν(x; t) 
and a procedure was given by Morris [1964] for carrying out this 
multiplication. He proved that, 
 
Theorem 
If λ = ( ),...,, 121

21 qmmm

qλλλ is a partition of n, and  

Qλ(x; t) qr(x; t) = 
υ
Σ υ

λµf (t) Qν, 

then υ
λµf (t) = 0, if the Schur function does not appear in the product Sλhr 

by means of Littlewood-Richardson rule, if Sν does appear in the product 
Sλhr and  

ν = (λ1 + r1, ,
11
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λ λ2 + r2, ,
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2
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λ …, λq + rq, 
1

1...,
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qλ , rq+1) 
where  0 ≤ ri ≤ r     (i, = 1,…,q + 1) 
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then   υ
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Zi(t)     (2.1) 
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On the basis of this theorem we shall prove the following result. 
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Theorem 
If λ = ( ),...,, 121

21 qmmm

qλλλ is a partition of n such that λ1 > λ2,…> λq  

And  Qλ qr-1,1 = 
υ
Σ ν

λ )1,1(, −rf  (t) Qν, 

then fλ(r-1,1) = 0, if Sν does not appear in the product Sλ Sr-1,1, and 
ν
λ )1,1(, −rf  (t) = 

µ
Σ ν

µ1f (t) µ
λ 1, −rf (t) 

where µ
λ 1, −rf (t) and ν

µ1f (t) are as defined in (2.1). 
 
Proof 
We know that 
   λq  = 

r
q

λλ ...1
= 

21 λλ qq  … 
r

qλ . 
Thus  
   Qλqr-1,1 = Qλqr-1 q1 

  = (Qλqr-1) q1 
Hence 

= (∑
µ

µ
λ 1, −rf (t) Qµ)q1 

Again using above theorem we have  
 Qλqr-1,1 = (∑

µ

µ
λ 1, −rf (t) (∑

ν

ν
µ 1,f (t) Qν(t)) 

By substituting 
µ
Σ µ

λ 1, −rf (t) ν
µ 1,f (t) = ν

λ )1,1(, −rf (t) 

we get the required result. 
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