▼ Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan. Vol.12, No.2, December 2001, pp. 189-193 ISSN 1021-1012

ON MULTIPLICATION OF HALL-LITTLEWOOD FUNCTIONS

N. Sultana

Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan. email: pdnaz@yahoo.com

Abstract: The subject of investigation in this paper is the multiplication of Hall-Littlewood symmetric functions. The main tool is to find the particular formula for the coefficient $f_{\lambda,(r-1,r)}^{\upsilon}$ (t) in the product of two HL-functions.

Keywords: HL-functions, horizontal strip, Schur function, Littlewood-Richardson rule.

INTRODUCTION

In this paper we shall discuss the multiplication of Hall-Littlewood functions. For this purpose we need to define the following concepts. Let λ and μ be partitions of n, such that $\mu_i \leq \lambda_i$ (i = 1,...,n). If the diagram [Macdonald 1995] of λ contains the diagram of μ . Then the skew diagram is the set theoretic difference $\theta = \lambda - \mu$. The conjugate of the skew diagram

$$[\theta] = [\lambda - \mu] \text{ is } [\theta'] = [\lambda' - \mu']$$

Let

where

$$\theta_i = \lambda_i - \mu_i, \ \theta'_i = \lambda'_i - \mu'_i$$

and $|\theta| = |\lambda| - |\mu|,$

a horizontal strip is a skew diagram with r squares which has at most one square in each column. Therefore for a horizontal strip

$$\theta'_i = \lambda'_i - \mu'_i = 0$$
 or 1 for each $i \ge 1$.

Let $P_{\lambda} = P_{\lambda}(x; t)$ and $Q_{\lambda} = Q_{\lambda}(x; t)$ be Hall-Littlewood P and Q functions [Sultana 2001] respectively, such that

$$\begin{aligned} & \mathsf{Q}_{\lambda} = \mathsf{b}_{\lambda}(t) \; \mathsf{P}_{\lambda} & (1.1) \\ & \mathsf{b}_{\lambda}(t) = \prod_{i \geq 1}^{m} \varphi_{m_{i}(\lambda)}(t), \; \mathsf{m}_{i}(\lambda) \text{ is multiplicity of i in } \lambda. \\ & \varphi_{\mathsf{m}}(t) = \prod_{i=1}^{m} (1 - t^{i}). \end{aligned}$$

Then there is another function $q_r(x;t)$ given by

$$q_{r}(\mathbf{x};t) = Q_{r}(\mathbf{x};t)$$
(1.2)
= (1 - t) $\sum_{i=1}^{n} x_{i}^{r} \prod_{j \neq i} \frac{x_{i} - t \cdot x_{j}}{x_{i} - x_{j}}$

Special cases of Q_{λ} are S-functions when t = 0 and another class of symmetric functions, called Q-functions, when t = -1.

(1.1)

N. Sultana

Rule for evaluating the product of two Schure-functions [Schur 1911] known as Littlewood-Richardson rule, was first stated but not proved by Littlewood and Richardson [1934]. The first proof of this rule is due to Las coux and Schutzenberger [1978] and Thomas [1974]. The method for the multiplication of Q-functions has been discussed by Morris [1962] which is similar to the method given by Murnaghan [1938].

THE PRODUCT OF TWO HALL-LITTLEWOOD FUNCTIONS

Macdonald [1995] has shown that the coefficient $f_{\lambda\mu}^{\upsilon}(t)$ occurs in the product of two HL-functions are related to the Hall polynomials $g_{\lambda\mu}^{\upsilon}$. By using the Hall Algebra and horizontal strip, he has proved the following results.

Theorem

If μ is a partition of n and P_µ is HL-P functions on the partition μ , then P_µP_{1^m} = $\Sigma F_{\mu_1^{m}}^{\lambda}$ (t) P_{λ}.

where

$$\mathsf{F}_{\mu 1^{m}}^{\lambda}(\mathsf{t}) = \frac{V_{\lambda}(t)}{\prod V_{m_{i}-r_{i}}(t) \ V_{r_{i}}(t)}$$

And

$$V_r(t) = \prod_{j=1}^r \frac{(1-t^j)}{(1-t)}.$$

Theorem

If
$$\lambda \supset \mu$$
 and $\theta = \lambda - \mu$ is horizontal strip then

$$\mathsf{P}_{\mu}\mathsf{P}_{\mathsf{r}} = \sum_{\lambda} \mathsf{F}_{\mu r}^{\lambda}(\mathsf{t}) \mathsf{P}_{\lambda}(\mathsf{t})$$

where

$$F_{\mu r}^{\lambda}(t) = (1 - t)^{-1} \left[\prod_{i \in I} (1 - t^{m_i(\lambda)})\right]$$

where I is a set of integers i such that

$$\theta'_{i} = 1$$
 and $\theta'_{i+1} = 0$ and $m_{i}(\lambda)$ is multiplicity of i in λ .

and $F_{\mu r}^{\lambda}(t) = 0$, otherwise.

Theorem

If $\lambda \supset \mu$ and $\theta~$ = λ - μ is a horizontal strip, then

$$Q_{\mu}q_{r} = \sum_{\lambda} f_{\mu r}^{\lambda}(t) Q_{r}$$

where

190

$$f_{\mu r}^{\lambda}(t) = \sum_{\lambda} \frac{b_{\mu}(t)}{b_{\lambda}(t)} \prod_{i \in I} (1 - t^{m_i(\lambda)}).$$

Proof

By using the above Theorem and the definitions of Q_{λ} and q_r given in (1.1) and (1.2) we get the required result.

EXPLICIT FORMULA FOR $f_{\lambda(r-1,1)}^{\nu}$ (t)

Morris [1963] has given direct method for evaluating the product of two functions $Q_{\lambda}(x; t)$ and $Q_{\nu}(x; t)$.

That is, if we let

$$\mathbf{Q}_{\lambda}\mathbf{Q}_{\mu} = \sum f_{\lambda\mu}^{\upsilon}(\mathbf{t}) \mathbf{Q}_{\nu}$$

It was shown how to determine the coefficient $f_{\lambda\mu}^{\upsilon}$ (t). His method depends on the evaluation of the product

$$Q_{\lambda}(\mathbf{x}; t) q_{r}(\mathbf{x}; t) = \sum f_{\lambda \mu}^{\upsilon}(t) Q_{\nu}(\mathbf{x}; t)$$

and a procedure was given by Morris [1964] for carrying out this multiplication. He proved that,

Theorem

If
$$\lambda = (\lambda_1^{m_1}, \lambda_2^{m_2}, ..., \lambda_{q1}^{m_q})$$
 is a partition of n, and
 $Q_{\lambda}(\mathbf{x}; t) q_r(\mathbf{x}; t) = \sum_{\nu} f_{\lambda\mu}^{\nu}(t) Q_{\nu},$

then $f_{\lambda\mu}^{\upsilon}(t)$ = 0, if the Schur function does not appear in the product $S_{\lambda}h_r$ by means of Littlewood-Richardson rule, if S_{ν} does appear in the product $S_{\lambda}h_r$ and

$$= (\lambda_{1} + r_{1}, \lambda_{1}^{m_{1}-1}, \lambda_{2} + r_{2}, \lambda_{2}^{m_{2}-1}, ..., \lambda_{q} + r_{q}, ..., \lambda_{q^{1}}^{m_{q}-1}, r_{q+1})$$

$$0 \le r_{i} \le r \quad (i, = 1, ..., q + 1)$$

$$\sum_{i=1}^{q+1} r_{i} = r,$$

where

ν

then

where

$$Z_{i}(t) = \begin{cases} 1 - t^{m_{i}}, if \ r_{i} > 0 & \& & \lambda_{i+1} + r_{i+1} < \lambda_{i} \\ \\ 1, if \ r_{i} > 0 & \& & \lambda_{i+1} + r_{i+1} = \lambda_{i} \\ 1, if \ r_{i} = 0 \end{cases}$$

On the basis of this theorem we shall prove the following result.

 $f_{\lambda\mu}^{\upsilon}(t) = \prod_{i=1}^{q} Z_i(t)$

(2.1)

Theorem

If $\lambda = (\lambda_1^{m_1}, \lambda_2^{m_2}, ..., \lambda_{q1}^{m_q})$ is a partition of n such that $\lambda_1 > \lambda_2, ... > \lambda_q$

And $Q_{\lambda} q_{r-1,1} = \sum_{v} f_{\lambda,(r-1,1)}^{v}$ (t) Q_{v} ,

then $f_{\lambda(r-1,1)} = 0$, if S_v does not appear in the product $S_\lambda S_{r-1,1}$, and $f_{\lambda,(r-1,1)}^v$ (t) = $\sum_{\mu} f_{\mu 1}^v$ (t) $f_{\lambda,r-1}^{\mu}$ (t)

where $f_{\lambda,r-1}^{\mu}(t)$ and $f_{\mu 1}^{\nu}(t)$ are as defined in (2.1).

Proof

We know that

$$q_{\lambda} = q_{\lambda_{1\dots\lambda_r}} = q_{\lambda_1}q_{\lambda_2} \dots q_{\lambda_r}.$$

Thus

$$\begin{aligned} Q_\lambda q_{r\text{-}1,1} &= Q_\lambda q_{r\text{-}1} \ q_1 \\ &= (Q_\lambda q_{r\text{-}1}) \ q_1 \end{aligned}$$

Hence

$$= (\sum_{\mu} f^{\mu}_{\lambda,r-1}(t) \mathbf{Q}_{\mu})\mathbf{q}_{1}$$

Again using above theorem we have

$$Q_{\lambda}q_{r-1,1} = (\sum_{\mu} f^{\mu}_{\lambda,r-1}(t) (\sum_{\nu} f^{\nu}_{\mu,1}(t) Q_{\nu}(t)))$$

By substituting $\sum_{\mu} f^{\mu}_{\lambda,r-1}(t) f^{\nu}_{\mu,1}(t) = f^{\nu}_{\lambda,(r-1,1)}(t)$

we get the required result.

References

- Lascoux, A. and Schutzenberger, M.P. (**1978**) "Sur une conjecture de H. O. Folkes" *C.R. Acad. Sci. Paris*, 286A, 323-324.
- Littlewood, D.E. and Richardson, A.R. (**1934**) "Group characters and Algebra", *Phil. Trans. A*, 233, 99-141.
- Macdonald, I.G. (**1995**) "Symmetric functions and Hall Polynomials", 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford.

Morris, A.O. (1962) "On Q-functions", J. London Math. Soc., 37, 445-455.

- Morris, A.O. (1963) "The multiplication of Hall functions", *Proc. London Math. Soc.*, 13, 733-742.
- Morris, A.O. (**1964**) "A note on the multiplication of Hall functions", *J. London Math. Soc.*, 39, 481-488.

Murnaghan, F.D. (1938) "The theory of group representations", Baltimore.

Schur, I. (1911) "Uber die Derstellungs der Symmetrischen und der alternierenden Gruppe durch gebrochene Lineare Substitutionen", *J. reine angew. Math.*, 139, 155-250. Sultana, N. (**2001**) "Some results on Hall-Littlewood Polynomials", *J. Natur. Sci. and Math.*, 41(1), 43-52.

Thomas, G.P. (**1974**) "Baxter Algebra and Schur functions", Ph.D. Thesis, University of Wales, U.K. Swansea.