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Abstract: The subject of investigation in this paper is the multiplication of Hall-
Littlewood symmetric functions. The main tool is to find the particular formula for
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INTRODUCTION

In this paper we shall discuss the multiplication of Hall-Littlewood
functions. For this purpose we need to define the following concepts.
Let A and p be partitions of n, such that w; < A; (i = 1,...,n). If the diagram
[Macdonald 1995] of A contains the diagram of u. Then the skew diagram
is the set theoretic difference 6 = A - u. The conjugate of the skew
diagram

[0]1=[A-pnlis[0']=[A" - u']
Let 9i=li-ui, el—’=7h; - H;
and 101 = (2] - Iul,
a horizontal strip is a skew diagram with r squares which has at most one
square in each column. Therefore for a horizontal strip

0/ =4/ -p =0or1foreachix1.

Let P, = Py(x; t) and Q; = Qu(x; t) be Hall-Littlewood P and Q functions
[Sultana 2001] respectively, such that
Q. = by(t) Ps (1.1)
where b, (t) = H (I)m,(k) (t), mi(1) is multiplicity of i in A.
i1

m

omt) = [T (1-1).

i=1
Then there is another function g,(x;t) given by

ax;t) = Qdx; 1) (1.2)
1 X, —t.X.
=(1-1) Xi : !
; | g Xp =X,
Special cases of Q; are S-functions when t = 0 and another class of
symmetric functions, called Q-functions, when t = -1.
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Rule for evaluating the product of two Schure-functions [Schur 1911]
known as Littlewood-Richardson rule, was first stated but not proved by
Littlewood and Richardson [1934]. The first proof of this rule is due to Las
coux and Schutzenberger [1978] and Thomas [1974]. The method for the
multiplication of Q-functions has been discussed by Morris [1962] which is
similar to the method given by Murnaghan [1938].

THE PRODUCT OF TWO HALL-LITTLEWOOD FUNCTIONS
Macdonald [1995] has shown that the coefficient ffu (t) occurs in the
product of two HL-functions are related to the Hall polynomials g;, . By

using the Hall Algebra and horizontal strip, he has proved the following
results.

Theorem
If uis a partition of n and P, is HL-P functions on the partition p, then

PP.=ZF" ., (t)P.

where
Fk ) (t) — Vx (f)
R VMO RO
And
1 1-1)
V.(t) ¥J R
Theorem

IfX>pand 6 = - pis horizontal strip then
PP=2 FL P
A

where

Filoey=(1-t" [J] (1-t"™]

iel

where | is a set of integers i such that
0/ =1and 0/, =0 and m;(») is multiplicity of i in L.
and F; (t) = 0, otherwise.

Theorem
IfX>pand 6 =2 - pis a horizontal strip, then

Quqr = z fk () Q.

where
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b, (1) |
f: (t) = oz 1-t"M),
() % 0 H( )

Proof

By using the above Theorem and the definitions of Q, and g, given in
(1.1) and (1.2) we get the required result.

EXPLICIT FORMULA FOR 7, (t)

Morris [1963] has given direct method for evaluating the product of two
functions Q;(x; t) and Q,(x; t).
That is, if we let

QQ.=Z 1, () Q
It was shown how to determine the coefficient f{)u(t)- His method
depends on the evaluation of the product

Q.(x; 1) a(x; 1) = Z £, (1) Qu(x; 1)
and a procedure was given by Morris [1964] for carrying out this
multiplication. He proved that,
Theorem
Ifr=(A" A, ), )is a partition of n, and
QG alt) = T £ (10 Q,
then fk"p (t) = 0, if the Schur function does not appear in the product S;h,

by means of Littlewood-Richardson rule, if S, does appear in the product
S;h; and

my -1
v=(k1+r1, 7\,1 , Ao+ 1o, 7\,2 ,...,Xq*‘l’q, vy A ,rq+1)

> Ng1
where o<r<r (,=1,....q+1)
q+1
Xrh=r,
i=1
q
then faw=T1 z (2.1)
i=1
where
1—t™if r,>0 & A, +r,, <\,
Zt) =
1 f >0 & A=A
1 ,if 7,=0

On the basis of this theorem we shall prove the following result.
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Theorem
A =(A" A5 ), )is @ partiion of n such that i > A,...> Aq
And Qx Qr1,1 = %4 f;:/,(rfu) (t) Qw

then f.11y = 0, if S, does not appear in the product S, S..1 1, and

Fon O=Z L0 £ 0
where f,*,  (t) and f}, (t) are as defined in (2.1).

Proof
We know that

. = D, = DD, - D,
Thus
Q. 9r1,1 = Qu9r1 Q1

= (Q.9-1) a1
Hence

= (Z f?&r—l (t) Qu)as
n
Again using above theorem we have

Q1= () S, O £ QW)

By substituting % fra® fii®= £ ®

we get the required result.
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